Structures
Structure is a special case of inductive datatype. It has only one constructor and is not recursive.
Similar to the inductive command, the structure command introduces a namespace with the same name.
The general form is as follows:
structure <name> <parameters> <parent-structures> where
<constructor-name> :: <fields>
Most parts are optional. Here is our first example.
structure Point (α : Type u) where
x : α
y : α
In the example above, the constructor name is not provided. So, the constructor is named mk by Lean.
Values of type Point are created using Point.mk a b or { x := a, y := b : Point α }. The latter can be
written as { x := a, y := b } when the expected type is known.
The fields of a point p are accessed using Point.x p and Point.y p. You can also the more compact notation p.x and p.y as a shorthand
for Point.x p and Point.y p.
# structure Point (α : Type u) where
# x : α
# y : α
#check Point
#check Point -- Type u -> Type u
#check @Point.mk -- {α : Type u} → α → α → Point α
#check @Point.x -- {α : Type u} → Point α → α
#check @Point.y -- {α : Type u} → Point α → α
#check Point.mk 10 20 -- Point Nat
#check { x := 10, y := 20 : Point Nat } -- Point Nat
def mkPoint (a : Nat) : Point Nat :=
{ x := a, y := a }
#eval (Point.mk 10 20).x -- 10
#eval (Point.mk 10 20).y -- 20
#eval { x := 10, y := 20 : Point Nat }.x -- 10
#eval { x := 10, y := 20 : Point Nat }.y -- 20
def addXY (p : Point Nat) : Nat :=
p.x + p.y
#eval addXY { x := 10, y := 20 } -- 30
In the notation { ... }, if the fields are in different lines, the , is optional.
# structure Point (α : Type u) where
# x : α
# y : α
def mkPoint (a : Nat) : Point Nat := {
x := a
y := a
}
You can also use where instead of := { ... }.
# structure Point (α : Type u) where
# x : α
# y : α
def mkPoint (a : Nat) : Point Nat where
x := a
y := a
Here are some simple theorems about our Point type.
# structure Point (α : Type u) where
# x : α
# y : α
theorem ex1 (a b : α) : (Point.mk a b).x = a :=
rfl
theorem ex2 (a b : α) : (Point.mk a b).y = b :=
rfl
theorem ex3 (a b : α) : Point.mk a b = { x := a, y := b } :=
rfl
The dot notation is convenient not just for accessing the projections of a structure,
but also for applying functions defined in a namespace with the same name.
If p has type Point, the expression p.foo is interpreted as Point.foo p,
assuming that the first argument to foo has type Point.
The expression p.add q is therefore shorthand for Point.add p q in the example below.
structure Point (α : Type u) where
x : α
y : α
def Point.add (p q : Point Nat) : Point Nat :=
{ x := p.x + q.x, y := p.y + q.y }
def p : Point Nat := Point.mk 1 2
def q : Point Nat := Point.mk 3 4
#eval (p.add q).x -- 4
#eval (p.add q).y -- 6
After we introduce type classes, we show how to define a function like add so that
it works generically for elements of Point α rather than just Point Nat,
assuming α has an associated addition operation.
More generally, given an expression p.foo x y z, Lean will insert p at the first argument to foo of type Point.
For example, with the definition of scalar multiplication below, p.smul 3 is interpreted as Point.smul 3 p.
structure Point (α : Type u) where
x : α
y : α
def Point.smul (n : Nat) (p : Point Nat) :=
Point.mk (n * p.x) (n * p.y)
def p : Point Nat :=
Point.mk 1 2
#eval (p.smul 3).x -- 3
#eval (p.smul 3).y -- 6
Inheritance
We can extend existing structures by adding new fields. This feature allows us to simulate a form of inheritance.
structure Point (α : Type u) where
x : α
y : α
inductive Color where
| red
| green
| blue
structure ColorPoint (α : Type u) extends Point α where
color : Color
#check { x := 10, y := 20, color := Color.red : ColorPoint Nat }
-- { toPoint := { x := 10, y := 20 }, color := Color.red }
The output for the check command above suggests how Lean encoded inheritance and multiple inheritance.
Lean uses fields to each parent structure.
structure Foo where
x : Nat
y : Nat
structure Boo where
w : Nat
z : Nat
structure Bla extends Foo, Boo where
bit : Bool
#check Bla.mk -- Foo → Boo → Bool → Bla
#check Bla.mk { x := 10, y := 20 } { w := 30, z := 40 } true
#check { x := 10, y := 20, w := 30, z := 40, bit := true : Bla }
#check { toFoo := { x := 10, y := 20 },
toBoo := { w := 30, z := 40 },
bit := true : Bla }
theorem ex :
Bla.mk { x := x, y := y } { w := w, z := z } b
=
{ x := x, y := y, w := w, z := z, bit := b } :=
rfl
Default field values
You can assign default value to fields when declaring a new structure.
inductive MessageSeverity
| error | warning
structure Message where
fileName : String
pos : Option Nat := none
severity : MessageSeverity := MessageSeverity.error
caption : String := ""
data : String
def msg1 : Message :=
{ fileName := "foo.lean", data := "failed to import file" }
#eval msg1.pos -- none
#eval msg1.fileName -- "foo.lean"
#eval msg1.caption -- ""
When extending a structure, you can not only add new fields, but provide new default values for existing fields.
# inductive MessageSeverity
# | error | warning
# structure Message where
# fileName : String
# pos : Option Nat := none
# severity : MessageSeverity := MessageSeverity.error
# caption : String := ""
# data : String
structure MessageExt extends Message where
timestamp : Nat
caption := "extended" -- new default value for field `caption`
def msg2 : MessageExt where
fileName := "bar.lean"
data := "error at initialization"
timestamp := 10
#eval msg2.fileName -- "bar.lean"
#eval msg2.timestamp -- 10
#eval msg2.caption -- "extended"
Updating structure fields
Structure fields can be updated using { <struct-val> with <field> := <new-value>, ... }:
# structure Point (α : Type u) where
# x : α
# y : α
def incrementX (p : Point Nat) : Point Nat := { p with x := p.x + 1 }