
How To Prove It With Lean

Daniel J. Velleman

Amherst College and University of Vermont

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

https://doi.org/10.1017/9781108539890

Table of contents

Preface 1
About This Book . 1
About Lean . 2
Installing Lean . 2
Using Gitpod . 6
About the HTPI Lean Package . 7
License . 7
Acknowledgments . 7

1 Sentential Logic 8

2 Quantificational Logic 10

Introduction to Lean 11
A First Example . 11
Term Mode . 12
Tactic Mode . 14
Types . 19

3 Proofs 22
3.1 & 3.2. Proofs Involving Negations and Conditionals 22
3.3. Proofs Involving Quantifiers . 30
3.4. Proofs Involving Conjunctions and Biconditionals 47
3.5. Proofs Involving Disjunctions . 62
3.6. Existence and Uniqueness Proofs . 76
3.7. More Examples of Proofs . 94

4 Relations 113
4.1. Ordered Pairs and Cartesian Products . 113
4.2. Relations . 113
4.3. More About Relations . 120
4.4. Ordering Relations . 124
4.5. Equivalence Relations . 130

5 Functions 139
5.1. Functions . 139

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

ii

https://doi.org/10.1017/9781108539890

Table of contents

5.2. One-to-One and Onto . 145
5.3. Inverses of Functions . 148
5.4. Closures . 152
5.5. Images and Inverse Images: A Research Project 157

6 Mathematical Induction 160
6.1. Proof by Mathematical Induction . 160
6.2. More Examples . 170
6.3. Recursion . 179
6.4. Strong Induction . 190
6.5. Closures Again . 199

7 Number Theory 206
7.1. Greatest Common Divisors . 206
7.2. Prime Factorization . 214
7.3. Modular Arithmetic . 230
7.4. Euler’s Theorem . 238
7.5. Public-Key Cryptography . 254

8 Infinite Sets 260
8.1. Equinumerous Sets . 260
8.1½. Debts Paid . 283
8.2. Countable and Uncountable Sets . 302
8.3. The Cantor–Schröder–Bernstein Theorem . 313

Appendix 321
Tactics Used . 321
Transitioning to Standard Lean . 322
Typing Symbols . 326

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

iii

https://doi.org/10.1017/9781108539890

Preface

About This Book

This book is intended to accompany my book How To Prove It: A Structured Approach, 3rd
edition (henceforth called HTPI), which is published by Cambridge University Press. Although
this book is self-contained, we will sometimes have occasion to refer to passages in HTPI, so
this book will be easiest to understand if you have a copy of HTPI available to you.

HTPI explains a systematic approach to constructing mathematical proofs. The purpose of
this book is to show you how to use a computer software package called Lean to help you
master the techniques presented in HTPI. Lean is free software that is available for Windows,
MacOS, and Unix computers. To get the most out of this book, you will need to download
and install Lean on your computer. We will explain how to do that below. An alternative is
to run Lean on the web using Gitpod; we also explain how to do that below.

The chapters and sections of this book are numbered to match the sections of HTPI to which
they correspond. The first two chapters of HTPI cover preliminary topics in elementary logic
and set theory that are needed to understand the proof techniques presented in later chapters.
We assume that you are already familiar with that material (if not, go read those chapters
in HTPI !), so Chapters 1 and 2 of this book will just briefly summarize the most important
points. Those chapters are followed by an introduction to Lean that explains the basics of
using Lean to write proofs. The presentation of proof techniques in HTPI begins in earnest
in Chapter 3, so that is where we will begin to discuss how Lean can be used to master those
techniques.

If you are reading this book online, then at the end of the title in the left margin you will find
an icon that is a link to a pdf version of the book. Below that is a search box, which you can
use to search for any word or phrase anywhere in the book. Below the search box is a list of
the chapters of the book. Click on any chapter to go to that chapter. Within each chapter,
a table of contents in the right margin lists the sections in that chapter. Again, you can go
to any section by clicking on it. At the end of each chapter there are links to take you to the
next or previous chapter.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

1

https://doi.org/10.1017/9781108539890
https://doi.org/10.1017/9781108539890
https://doi.org/10.1017/9781108539890

Preface

About Lean

Lean is a kind of software package called a proof assistant. What that means is that Lean can
help you to write proofs. As we will see over the course of this book, there are several ways
in which Lean can be helpful. First of all, if you type a proof into Lean, then Lean can check
the correctness of the proof and point out errors. As you are typing a proof into Lean, it will
keep track of what has been accomplished so far in the proof and what remains to be done to
finish the proof, and it will display that information for you. That can keep you moving in the
right direction as you are figuring out a proof. And sometimes Lean can fill in small details of
the proof for you.

Of course, to make this possible, you must type your proof in a format that Lean understands.
Much of this book will be taken up with explaining how to write a proof so that Lean will
understand it.

Installing Lean

These instructions are based on the installation procedure that is described here. Alternative
installation procedures can be found here.

We will be using Visual Studio Code to run Lean, so you will need to install VS Code first.
VS Code is free and can be downloaded here.

You will also need the Lean package that accompanies this book, which can be downloaded
from https://github.com/djvelleman/HTPILeanPackage. After following the link, click on the
green “Code” button and, in the pop-up menu, select “Download ZIP”. Open the downloaded
zip file to create a folder containing the HTPI Lean package. You can put this folder wherever
you want on your computer.

Now open VS Code. You should see a window that looks something like this:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

2

https://leanprover.github.io
https://lean-lang.org/lean4/doc/quickstart.html
https://leanprover-community.github.io/get_started.html
https://code.visualstudio.com
https://github.com/djvelleman/HTPILeanPackage
https://doi.org/10.1017/9781108539890

Preface

Click on the Extensions icon on the left side of the window, which is circled in red in the image
above. That will bring up a list of available extensions:

In the Search Extensions in Marketplace field, type “lean4”. VS Code should find the Lean 4

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

3

https://doi.org/10.1017/9781108539890

Preface

extension and display it:

Click on “Install” to install the Lean 4 extension.

Next, in VS Code, select “Open Folder …” from the File menu and open the folder containing
the HTPI Lean package that you downloaded earlier. Under the heading “Explorer” on the
left side of the window, you should see a list of the files in the package. (If you don’t see the
list, try clicking on the Explorer icon, circled in red below.)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

4

https://doi.org/10.1017/9781108539890

Preface

Click on the file “Blank.lean” in the file list. You should see a warning that VS Code failed to
start the ‘lean’ language server:

Click on the “Install Lean using Elan” button, and Lean should be installed. Then Lean should
“build” the HTPI Lean package. This may take a while, but it only has to be done once.

If anything goes wrong, try quitting VS Code and restarting. Eventually your window should
look like this:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

5

https://doi.org/10.1017/9781108539890

Preface

If you don’t see the Infoview pane on the right side of the window, click on the “∀” icon circled
in red in the image above and select “Infoview: Toggle Infoview” from the popup menu.

Your installation is now complete.

Using Gitpod

To open the Lean package that accompanies this book in Gitpod, click here.

You will be prompted to create a Gitpod account if you don’t already have one; a free account
gives you 50 hours of use per month. Then you will be asked to create a “workspace”. Click on
“Continue”. It will take some time to create your workspace and initialize Lean, but this only
needs to be done once. You will see messages about “cloning”, “building”, “downloading”, and
“decompressing”. Then there will be messages about “building” files for the chapters of this
book. (There will be some warning messages during this process, which you can ignore.) The
last message will be “building HTPILib”. When that process is complete, you can click on the
“X” on the right side of the lower part of the window to close the terminal pane containing
the messages. You should see the HTPI Lean package, as described in the previous section.
Later, you can return to the workspace you just created from your Gitpod user page.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

6

https://gitpod.io/#https://github.com/djvelleman/HTPILeanPackage
https://gitpod.io/workspaces
https://doi.org/10.1017/9781108539890

Preface

About the HTPI Lean Package

For each chapter, starting with “Introduction to Lean,” the package has a file containing
all Lean definitions and theorems from that chapter. There are also files containing all the
exercises. In the exercise file for a chapter, all definitions and theorems from that chapter and
all earlier chapters are available for use in solving the exercises.

The chapter files are inside the folder “HTPILib”. There is also one other file in that folder.
All of these files are needed to make the package work. Do not edit the files in the HTPILib
folder, or you will need to re-download the package.

License

This book is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License. This license allows you to share or adapt the book. In any adaptation, you must
identify Daniel J. Velleman as the author, and you must also acknowledge that excerpts from
How To Prove It, 3rd edition, copyright Daniel J. Velleman 2019, published by Cambridge
University Press, are reprinted with the permission of Cambridge University Press. Each such
excerpt is identified in this book with a parenthetical note “(HTPI p. …)” specifying the page
of How To Prove It, 3rd edition from which the excerpt is taken. For further details, see the
text of the license.

Acknowledgments

A number of people have provided advice, encouragement, and feedback about this project.
In particular, I would like to thank Jeremy Avigad, Clayton Cafiero, François Dorais, Charles
Hoskinson, Heather Macbeth, Pietro Monticone, and Ketil Wright.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

7

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.1017/9781108539890

1 Sentential Logic

Chapter 1 of How To Prove It introduces the following symbols of logic:

Symbol Meaning
¬ not
∧ and
∨ or
→ if … then
↔ iff (that is, if and only if)

As we will see, Lean uses the same symbols, with the same meanings. A statement of the
form 𝑃 ∧ 𝑄 is called a conjunction, a statement of the form 𝑃 ∨ 𝑄 is called a disjunction, a
statement of the form 𝑃 → 𝑄 is an implication or a conditional statement (with antecedent
𝑃 and consequent 𝑄), and a statement of the form 𝑃 ↔ 𝑄 is a biconditional statement. The
statement ¬𝑃 is the negation of 𝑃 .

This chapter also establishes a number of logical equivalences that will be useful to us later:

Name Equivalence
De Morgan’s Laws ¬(𝑃 ∧ 𝑄) is equivalent to ¬𝑃 ∨ ¬𝑄

¬(𝑃 ∨ 𝑄) is equivalent to ¬𝑃 ∧ ¬𝑄
Double Negation Law ¬¬𝑃 is equivalent to 𝑃
Conditional Laws 𝑃 → 𝑄 is equivalent to ¬𝑃 ∨ 𝑄

𝑃 → 𝑄 is equivalent to ¬(𝑃 ∧ ¬𝑄)
Contrapositive Law 𝑃 → 𝑄 is equivalent to ¬𝑄 → ¬𝑃

Finally, Chapter 1 of HTPI introduces some concepts from set theory. A set is a collection of
objects; the objects in the collection are called elements of the set. The notation 𝑥 ∈ 𝐴 means
that 𝑥 is an element of 𝐴. Two sets 𝐴 and 𝐵 are equal if they have exactly the same elements.
We say that 𝐴 is a subset of 𝐵, denoted 𝐴 ⊆ 𝐵, if every element of 𝐴 is an element of 𝐵. If
𝑃(𝑥) is a statement about 𝑥, then {𝑥 ∣ 𝑃 (𝑥)} denotes the set whose elements are the objects
𝑥 for which 𝑃 (𝑥) is true. And we have the following operations on sets:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

8

https://doi.org/10.1017/9781108539890

1 Sentential Logic

𝐴 ∩ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵} = the intersection of 𝐴 and 𝐵,

𝐴 ∪ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵} = the union of 𝐴 and 𝐵,

𝐴 \ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵} = the difference of 𝐴 and 𝐵,

𝐴 ∆ 𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴) = the symmetric difference of 𝐴 and 𝐵.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

9

https://doi.org/10.1017/9781108539890

2 Quantificational Logic

Chapter 2 of How To Prove It introduces two more symbols of logic, the quantifiers ∀ and ∃.
If 𝑃(𝑥) is a statement about an object 𝑥, then

∀𝑥 𝑃(𝑥) means “for all 𝑥, 𝑃(𝑥),”

and

∃𝑥 𝑃 (𝑥) means “there exists some 𝑥 such that 𝑃(𝑥).”

Lean also uses these symbols, although we will see that quantified statements are written
slightly differently in Lean from the way they are written in HTPI. In the statement 𝑃(𝑥), the
variable 𝑥 is called a free variable. But in ∀𝑥 𝑃(𝑥) or ∃𝑥 𝑃(𝑥), it is a bound variable; we say
that the quantifiers ∀ and ∃ bind the variable.

Once again, there are logical equivalences involving these symbols that will be useful to us
later:

Quantifier Negation Laws
¬∃𝑥 𝑃(𝑥) is equivalent to ∀𝑥 ¬𝑃(𝑥)
¬∀𝑥 𝑃(𝑥) is equivalent to ∃𝑥 ¬𝑃(𝑥)

Chapter 2 of HTPI also introduces some more advanced set theory operations. For any set
𝐴,

P(𝐴) = {𝑋 ∣ 𝑋 ⊆ 𝐴} = the power set of 𝐴.

Also, if ℱ is a family of sets—that is, a set whose elements are sets—then

⋂ ℱ = {𝑥 ∣ ∀𝐴(𝐴 ∈ ℱ → 𝑥 ∈ 𝐴)} = the intersection of the family ℱ,

⋃ ℱ = {𝑥 ∣ ∃𝐴(𝐴 ∈ ℱ ∧ 𝑥 ∈ 𝐴)} = the union of the family ℱ.

Finally, Chapter 2 introduces the notation ∃!𝑥 𝑃(𝑥) to mean “there is exactly one 𝑥 such that
𝑃(𝑥).” This can be thought of as an abbreviation for ∃𝑥(𝑃(𝑥) ∧ ¬∃𝑦(𝑃(𝑦) ∧ 𝑦 ≠ 𝑥)). By
the quantifier negation, De Morgan, and conditional laws, this is equivalent to ∃𝑥(𝑃(𝑥) ∧
∀𝑦(𝑃(𝑦) → 𝑦 = 𝑥)).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

10

https://doi.org/10.1017/9781108539890

Introduction to Lean

If you are reading this book in conjunction with How To Prove It, you should complete Section
3.2 of HTPI before reading this chapter. Once you have reached that point in HTPI, you are
ready to start learning about Lean. In this chapter we’ll explain the basics of writing proofs
in Lean and getting feedback from Lean.

A First Example

We’ll start with Example 3.2.4 in How To Prove It. Here is how the theorem and proof in that
example appear in HTPI (HTPI p. 110; consult HTPI if you want to see how this proof was
constructed):

Theorem. Suppose 𝑃 → (𝑄 → 𝑅). Then ¬𝑅 → (𝑃 → ¬𝑄).

Proof. Suppose ¬𝑅. Suppose 𝑃 . Since 𝑃 and 𝑃 → (𝑄 → 𝑅), it follows that 𝑄 → 𝑅. But
then, since ¬𝑅, we can conclude ¬𝑄. Thus, 𝑃 → ¬𝑄. Therefore ¬𝑅 → (𝑃 → ¬𝑄).

And here is how we would write the proof in Lean. (If you are reading this book online, then
Lean examples like the one below will appear in gray boxes. You can copy the example to
your clipboard by clicking in the upper-right corner of the box, and then you can paste it into
a file in VS Code to try it out.)

theorem Example_3_2_4
(P Q R : Prop) (h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
have h4 : Q → R := h h3
contrapos at h4 --Now h4 : ¬R → ¬Q
show ¬Q from h4 h2
done

Let’s go through this Lean proof line-by-line and see what it means. The first line tells Lean
that we are going to prove a theorem, and it gives the theorem a name, Example_3_2_4. The
next line states the theorem. In the theorem as stated in HTPI, the letters 𝑃 , 𝑄, and 𝑅 are

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

11

https://doi.org/10.1017/9781108539890

Introduction to Lean

used to stand for statements that are either true or false. In logic, such statements are often
called propositions. The expression (P Q R : Prop) on the second line tells Lean that P, Q, and
R will be used in this theorem to stand for propositions. The next parenthetical expression, (h
: P → (Q → R)), states the hypothesis of the theorem and gives it the name h; the technical
term that Lean uses is that h is an identifier for the hypothesis. Assigning an identifier to the
hypothesis gives us a way to refer to it when it is used later in the proof. Almost any string of
characters that doesn’t begin with a digit can be used as an identifier, but it is traditional to
use identifiers beginning with the letter h for hypotheses. After the statement of the hypothesis
there is a colon followed by the conclusion of the theorem, ¬R → (P → ¬Q). Finally, at the end
of the second line, the expression := by signals the beginning of the proof.

Each of the remaining lines is a step in the proof. The first line of the proof introduces the
assumption ¬R and gives it the identifier h2. Of course, this corresponds precisely to the first
sentence of the proof in HTPI. Similarly, the second line, corresponding to the second sentence
of the HTPI proof, assigns the identifier h3 to the assumption P. The next line makes the
inference Q → R, giving it the identifier h4. The inference is justified by combining statements
h and h3—that is, the statements P → (Q → R) and P—exactly as in the third sentence of the
proof in HTPI.

The next step of the proof in HTPI combines the statements 𝑄 → 𝑅 and ¬𝑅 to draw the
inference ¬𝑄. This reasoning is justified by the contrapositive law, which says that 𝑄 → 𝑅
is equivalent to its contrapositive, ¬𝑅 → ¬𝑄. In the Lean proof, this inference is broken up
into two steps. In the fourth line of the proof, we ask Lean to rewrite statement h4—that
is, Q → R—using the contrapositive law. Two hyphens in a row tell Lean that the rest of the
line is a comment. Lean ignores comments and displays them in green. The comment on
line four serves as a reminder that h4 now stands for the statement ¬R → ¬Q. Finally, in the
last step of the proof, we combine the new h4 with h2 to infer ¬Q. There is no need to give
this statement an identifier, because it completes the proof. In the proof in HTPI, there are
a couple of final sentences explaining why this completes the proof, but Lean doesn’t require
this explanation.

Term Mode

Now that you have seen an example of a proof in Lean, it is time for you to write your first
proof. Lean has two modes for writing proofs, called term mode and tactic mode. The example
above was written in tactic mode, and that is the mode we will use for most proofs in this
book. But before we study the construction of proofs in tactic mode, it will be helpful to learn
a bit about term mode. Term mode is best for simple proofs, so we begin with a few very
short proofs.

If you have not yet installed Lean on your computer, go back and follow the instructions
for installing it now. Then in VS Code, open the folder containing the HTPI Lean Package
that you downloaded, and click on the file Blank.lean. The file starts with the line import

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

12

https://doi.org/10.1017/9781108539890

Introduction to Lean

HTPILib.HTPIDefs. Click on the blank line at the end of the file; this is where you will be
typing your first proofs.

Now type in the following theorem and proof:

theorem extremely_easy (P : Prop) (h : P) : P := h

This theorem and proof are so short we have put everything on one line. In this theorem, the
letter P is used to stand for a proposition. The theorem has one hypothesis, P, which has been
given the identifier h, and the conclusion of the theorem is also P. The notation := indicates
that what follows will be a proof in term mode.

Of course, the proof of the theorem is extremely easy: to prove P, we just have to point out
that it is given as the hypothesis h. And so the proof in Lean consists of just one letter: h.

Even though this example is a triviality, there are some things to be learned from it. First of
all, although we have been describing the letter h as an identifier for the hypothesis P, this
example illustrates that Lean also considers h to be a proof of P. In general, when we see h :
P in a Lean proof, where P is a proposition, we can think of it as meaning, not just that h is
an identifier for the statement P, but also that h is a proof of P.

We can learn something else from this example by changing it slightly. If you change the final
h to a different letter—say, f—you will see that Lean puts a red squiggly line under the f, like
this:

theorem extremely_easy (P : Prop) (h : P) : P :=
:
f

This indicates that Lean has detected an error in the proof. Lean always indicates errors by
putting a red squiggle under the offending text. Lean also puts a message in the Lean Infoview
pane explaining what the error is. (If you don’t see the Infoview pane, choose “Command
Palette …” in the “View” menu, and then type “Lean” in the text box that appears. You will
see a list of commands that start with “Lean”. Click on “Lean 4: Infoview: Toggle” to make
the Infoview pane appear.) In this case, the message is unknown identifier 'f'. The message
is introduced by a heading, in red, that identifies the file, the line number, and the character
position on that line where the error appears. If you change f back to h, the red squiggle and
error message go away.

Let’s try a slightly less trivial example. You can type the next theorem below the previous
one, leaving a blank line between them to keep them visually separate. To type the → symbol
in the next example, type \to and then hit either the space bar or the tab key; when you type
either space or tab, the \to will change to →. Alternatively, you can type \r (short for “right
arrow”) or \imp (short for “implies”), again followed by either space or tab. Or, you can type
->, and Lean will interpret it as →. (There is a list in the appendix showing how to type all of
the symbols used in this book.)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

13

https://doi.org/10.1017/9781108539890

Introduction to Lean

theorem very_easy
(P Q : Prop) (h1 : P → Q) (h2 : P) : Q := h1 h2

Indenting the second line is not necessary, but it is traditional. When stating a theorem, we
will generally indent all lines after the first with two tabs in VS Code. Once you indent a line,
VS Code will maintain that same indenting in subsequent lines until you delete tabs at the
beginning of a line to reduce or eliminate indenting.

This time there are two hypotheses, h1 : P → Q and h2 : P. As explained in Section 3.2 of
HTPI, the conclusion Q follows from these hypotheses by the logical rule modus ponens. To
use modus ponens to complete this proof in term mode, we simply write the identifiers of
the two hypotheses—which, as we have just seen, can also be thought of as proofs of the two
hypotheses—one after the other, with a space between them. It is important to write the proof
of the conditional hypothesis first, so the proof is written h1 h2; if you try writing this proof
as h2 h1, you will get a red squiggle. In general, if a is a proof of any conditional statement X
→ Y, and b is a proof of the antecedent X, then a b is a proof of the consequent Y. The proofs a
and b need not be simply identifiers; any proofs of a conditional statement and its antecedent
can be combined in this way.

We’ll try one more proof in term mode:

theorem easy (P Q R : Prop) (h1 : P → Q)
(h2 : Q → R) (h3 : P) : R :=

Note that in the statement of the theorem, you can break the lines however you please; this
time we have put the declaration of P, Q, and R and the first hypothesis on the first line and
the other two hypotheses on the second line. How can we prove the conclusion R? Well, we
have h2 : Q → R, so if we could prove Q then we could use modus ponens to reach the desired
conclusion. In other words, h2 _ will be a proof of R, if we can fill in the blank with a proof
of Q. Can we prove Q? Yes, Q follows from P → Q and P by modus ponens, so h1 h3 is a proof of
Q. Filling in the blank, we conclude that h2 (h1 h3) is a proof of R. Type it in, and you’ll see
that Lean will accept it. Note that the parentheses are important; if you write h2 h1 h3 then
Lean will interpret it as (h2 h1) h3, which doesn’t make sense, and you’ll get an error.

Tactic Mode

For more complicated proofs, it is easier to use tactic mode. Type the following theorem into
Lean; to type the symbol ¬, type \not, followed again by either space or tab. Alternatively, if
you type Not P, Lean will interpret it as meaning ¬P.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

14

https://doi.org/10.1017/9781108539890

Introduction to Lean

theorem two_imp (P Q R : Prop)
(h1 : P → Q) (h2 : Q → ¬R) : R → ¬P :=

Lean is now waiting for you to type a proof in term mode. To switch to tactic mode, type by
after :=. We find it helpful to set off a tactic proof from the surrounding text by indenting it
with one tab, and also by marking where the proof ends. To do this, leave a blank line after
the statement of the theorem, adjust the indenting to one tab, and type done. You will type
your proof between the statement of the theorem and the line containing done, so click on the
blank line between them to position the cursor there. Lean can be fussy about indenting; it
will be important to indent all steps of the proof by the same amount.

One of the advantages of tactic mode is that Lean displays, in the Lean Infoview pane, infor-
mation about the status of the proof as your write it. As soon as you position your cursor on
the blank line, Lean displays what it calls the “tactic state” in the Infoview pane. Your screen
should look like this:

Lean File

theorem two_imp (P Q R : Prop)
(h1 : P → Q) (h2 : Q → ¬R) : R → ¬P := by

::::
done

Tactic State in Infoview

P Q R : Prop
h1 : P → Q
h2 : Q → ¬R
⊢ R → ¬P

The red squiggle under done indicates that Lean knows that the proof isn’t done. The tactic
state in the Infoview pane is very similar to the lists of givens and goals that are used in HTPI.
The hypotheses h1 : P → Q and h2 : Q → ¬R are examples of what are called givens in HTPI.
The tactic state above says that P, Q, and R stand for propositions, and then it lists the two
givens h1 and h2. The symbol ⊢ in the last line labels the goal, R → ¬P. The tactic state is a
valuable tool for guiding you as you are figuring out a proof; whenever you are trying to decide
on the next step of a proof, you should look at the tactic state to see what givens you have to
work with and what goal you need to prove.

From the givens h1 and h2 it shouldn’t be hard to prove P → ¬R, but the goal is R → ¬P. This
suggests that we should prove the contrapositive of the goal. Type contrapos (indented by one
tab, to match the indenting of done) to tell Lean that you want to replace the goal with its
contrapositive. As soon as you type contrapos, Lean will update the tactic state to reflect the
change in the goal. You should now see this:

Lean File

theorem two_imp (P Q R : Prop)
(h1 : P → Q) (h2 : Q → ¬R) : R → ¬P := by

contrapos
::::
done

Tactic State in Infoview

P Q R : Prop
h1 : P → Q
h2 : Q → ¬R
⊢ P → ¬R

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

15

https://doi.org/10.1017/9781108539890

Introduction to Lean

If you want to make your proof a little more readable, you could add a comment saying that
the goal has been changed to P → ¬R. To prove the new goal, we will assume P and prove ¬R.
So type assume h3 : P on a new line (after contrapos, but before done). Once again, the tactic
state is immediately updated. Lean adds h3 : P as a new given, and it knows, without having
to be told, that the goal should now be ¬R:

Lean File

theorem two_imp (P Q R : Prop)
(h1 : P → Q) (h2 : Q → ¬R) : R → ¬P := by

contrapos --Goal is now P → ¬R
assume h3 : P
::::
done

Tactic State in Infoview

P Q R : Prop
h1 : P → Q
h2 : Q → ¬R
h3 : P
⊢ ¬R

We can now use modus ponens to infer Q from h1 : P → Q and h3 : P. As we saw earlier,
this means that h1 h3 is a term-mode proof of Q. So on the next line, type have h4 : Q :=
h1 h3. To make an inference, you need to provide a justification, so := here is followed by
the term-mode proof of Q. Usually we will use have to make easy inferences for which we can
give simple term-mode proofs. (We’ll see later that it is also possible to use have to make an
inference justified by a tactic-mode proof.) Of course, Lean updates the tactic state by adding
the new given h4 : Q:

Lean File

theorem two_imp (P Q R : Prop)
(h1 : P → Q) (h2 : Q → ¬R) : R → ¬P := by

contrapos --Goal is now P → ¬R
assume h3 : P
have h4 : Q := h1 h3
::::
done

Tactic State in Infoview

P Q R : Prop
h1 : P → Q
h2 : Q → ¬R
h3 : P
h4 : Q
⊢ ¬R

Finally, to complete the proof, we can infer the goal ¬R from h2 : Q → ¬R and h4 : Q, using
the term-mode proof h2 h4. Type show ¬R from h2 h4 to complete the proof. You’ll notice
two changes in the display: the red squiggle will disappear from the word done, and the tactic
state will say “No goals” to indicate that there is nothing left to prove:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

16

https://doi.org/10.1017/9781108539890

Introduction to Lean

Lean File

theorem two_imp (P Q R : Prop)
(h1 : P → Q) (h2 : Q → ¬R) : R → ¬P := by

contrapos --Goal is now P → ¬R
assume h3 : P
have h4 : Q := h1 h3
show ¬R from h2 h4
done

Tactic State in Infoview

No goals

Congratulations! You’ve written your first proof in tactic mode. If you move your cursor
around in the proof, you will see that Lean always displays in the Infoview the tactic state at
the point in the proof where the cursor is located. Try clicking on different lines of the proof
to see how the tactic state changes over the course of the proof. If you want to try another
example, you could try typing in the first example in this chapter. You will learn the most
from this book if you continue to type the examples into Lean and see for yourself how the
tactic state gets updated as the proof is written.

We have now seen four tactics: contrapos, assume, have, and show. If the goal is a conditional
statement, the contrapos tactic replaces it with its contrapositive. If h is a given that is a
conditional statement, then contrapos at h will replace h with its contrapositive. If the goal is
a conditional statement P → Q, you can use the assume tactic to assume the antecedent P, and
Lean will set the goal to be the consequent Q. You can use the have tactic to make an inference
from your givens, as long as you can justify the inference with a proof. The show tactic is
similar, but it is used to infer the goal, thus completing the proof. And we have learned how
to use one rule of inference in term mode: modus ponens. In the rest of this book we will
learn about other tactics and other term-mode rules.

Before continuing, it might be useful to summarize how you type statements into Lean. We
have already told you how to type the symbols → and ¬, but you will want to know how to
type all of the logical connectives. In each case, the command to produce the symbol must be
followed by space or tab, but there is also a plain text alternative:

Symbol How To Type It Plain Text Alternative
¬ \not or \n Not
∧ \and /\
∨ \or or \v \/
→ \to or \r or \imp ->
↔ \iff or \lr <->

Lean has conventions that it follows to interpret a logical statement when there are not enough
parentheses to indicate how terms are grouped in the statement. For our purposes, the most
important of these conventions is that P → Q → R is interpreted as P → (Q → R), not (P → Q) → R.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

17

https://doi.org/10.1017/9781108539890

Introduction to Lean

The reason for this is simply that statements of the form P → (Q → R) come up much more often
in proofs than statements of the form (P → Q) → R. (Lean also follows this “grouping-to-the-
right” convention for ∧ and ∨, although this makes less of a difference, since these connectives
are associative.) Of course, when in doubt about how to type a statement, you can always put
in extra parentheses to avoid confusion.

We will be using tactics to apply several logical equivalences. Here are tactics corresponding
to all of the logical laws listed in Chapter 1, as well as one additional law:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

18

https://doi.org/10.1017/9781108539890

Introduction to Lean

Logical Law Tactic Transformation
Contrapositive Law contrapos P → Q is changed to ¬Q → ¬P
De Morgan’s Laws demorgan ¬(P ∧ Q) is changed to ¬P ∨ ¬Q

¬(P ∨ Q) is changed to ¬P ∧ ¬Q
P ∧ Q is changed to ¬(¬P ∨ ¬Q)
P ∨ Q is changed to ¬(¬P ∧ ¬Q)

Conditional Laws conditional P → Q is changed to ¬P ∨ Q
¬(P → Q) is changed to P ∧ ¬Q
P ∨ Q is changed to ¬P → Q
P ∧ Q is changed to ¬(P → ¬Q)

Double Negation Law double_neg ¬¬P is changed to P
Biconditional Negation Law bicond_neg ¬(P ↔ Q) is changed to ¬P ↔ Q

P ↔ Q is changed to ¬(¬P ↔ Q)

All of these tactics work the same way as the contrapos tactic: by default, the transformation
is applied to the goal; to apply it to a given h, add at h after the tactic name.

Types

All of our examples so far have just used letters to stand for propositions. To prove theorems
with mathematical content, we will need to introduce one more idea.

The underlying theory on which Lean is based is called type theory. We won’t go very deeply
into type theory, but we will need to make use of the central idea of the theory: every variable
in Lean must have a type. What this means is that, when you introduce a variable to stand for
a mathematical object in a theorem or proof, you must specify what type of object the variable
stands for. We have already seen this idea in action: in our first example, the expression (P
Q R : Prop) told Lean that the variables P, Q, and R have type Prop, which means they stand
for propositions. There are types for many kinds of mathematical objects. For example, Nat
is the type of natural numbers, and Real is the type of real numbers. So if you want to state
a theorem about real numbers x and y, the statement of your theorem might start with (x y
: Real). You must include such a type declaration before you can use the variables x and y as
free variables in the hypotheses or conclusion of your theorem.

What about sets? If you want to prove a theorem about a set A, can you say that A has type
Set? No, Lean is fussier than that. Lean wants to know, not only that A is a set, but also
what the type of the elements of A is. So you can say that A has type Set Nat if A is a set
whose elements are natural numbers, or Set Real if it is a set of real numbers, or even Set (Set
Nat) if it is a set whose elements are sets of natural numbers. Here is an example of a simple

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

19

https://doi.org/10.1017/9781108539890

Introduction to Lean

theorem about sets; it is a simplified version of Example 3.2.5 in HTPI. To type the symbols
∈, ∉, and \ in this theorem, type \in, \notin, and \\, respectively.

Lean File

theorem Example_3_2_5_simple
(B C : Set Nat) (a : Nat)
(h1 : a ∈ B) (h2 : a ∉ B \ C) : a ∈ C := by

::::
done

Tactic State in Infoview

B C : Set ℕ
a : ℕ
h1 : a ∈ B
h2 : a ∉ B \ C
⊢ a ∈ C

The second line of this theorem statement declares that the variables B and C stand for sets of
natural numbers, and a stands for a natural number. The third line states the two hypotheses
of the theorem, a ∈ B and a ∉ B \ C, and the conclusion, a ∈ C. (Note that Lean occasionally
writes things slightly differently in the tactic state. In this case, Lean has written ℕ instead of
Nat.)

To figure out this proof, we’ll imitate the reasoning in Example 3.2.5 in HTPI. We begin by
writing out the meaning of the given h2. Fortunately, we have a tactic for that. The tactic
define writes out the definition of the goal, and as usual we can add at to apply the tactic to
a given rather than the goal. Here’s the situation after using the tactic define at h2:

Lean File

theorem Example_3_2_5_simple
(B C : Set Nat) (a : Nat)
(h1 : a ∈ B) (h2 : a ∉ B \ C) : a ∈ C := by

define at h2 --Now h2 : ¬(a ∈ B ∧ a ∉ C)
::::
done

Tactic State in Infoview

B C : Set ℕ
a : ℕ
h1 : a ∈ B
h2 : ¬(a ∈ B ∧ a ∉ C)
⊢ a ∈ C

Looking at the tactic state, we see that Lean has written out the meaning of set difference in
h2. And now we can see that, as in Example 3.2.5 in HTPI, we can put h2 into a more useful
form by applying first one of De Morgan’s laws to rewrite it as a ∉ B ∨ a ∈ C and then a
conditional law to change it to a ∈ B → a ∈ C:

Lean File

theorem Example_3_2_5_simple
(B C : Set Nat) (a : Nat)
(h1 : a ∈ B) (h2 : a ∉ B \ C) : a ∈ C := by

define at h2 --Now h2 : ¬(a ∈ B ∧ a ∉ C)
demorgan at h2 --Now h2 : a ∉ B ∨ a ∈ C
conditional at h2 --Now h2 : a ∈ B → a ∈ C
::::
done

Tactic State in Infoview

B C : Set ℕ
a : ℕ
h1 : a ∈ B
h2 : a ∈ B → a ∈ C
⊢ a ∈ C

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

20

https://doi.org/10.1017/9781108539890

Introduction to Lean

Occasionally, you may feel that the application of two tactics one after the other should be
thought of as a single step. To allow for this, Lean lets you put two tactics on the same line,
separated by a semicolon. For example, in this proof you could write the use of De Morgan’s
law and the conditional law as a single step by writing demorgan at h2; conditional at h2.
Now the rest is easy: we can apply modus ponens to reach the goal:

Lean File

theorem Example_3_2_5_simple
(B C : Set Nat) (a : Nat)
(h1 : a ∈ B) (h2 : a ∉ B \ C) : a ∈ C := by

define at h2 --Now h2 : ¬(a ∈ B ∧ a ∉ C)
demorgan at h2; conditional at h2

--Now h2 : a ∈ B → a ∈ C
show a ∈ C from h2 h1
done

Tactic State in Infoview

No goals

There is one unfortunate feature of this theorem: We have stated it as a theorem about sets
of natural numbers, but the proof has nothing to do with natural numbers. Exactly the same
reasoning would prove a similar theorem about sets of real numbers, or sets of objects of any
other type. Do we need to write a different theorem for each of these cases? No, fortunately
there is a way to write one theorem that covers all the cases:

theorem Example_3_2_5_simple_general
(U : Type) (B C : Set U) (a : U)
(h1 : a ∈ B) (h2 : a ∉ B \ C) : a ∈ C := by

In this version of the theorem, we have introduced a new variable U, whose type is … Type! So
U can stand for any type. You can think of the variable U as playing the role of the universe
of discourse, an idea that was introduced in Section 1.3 of HTPI. The sets B and C contain
elements from that universe of discourse, and a belongs to the universe. You can prove the
new version of the theorem by using exactly the same sequence of tactics as before.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

21

https://doi.org/10.1017/9781108539890

3 Proofs

3.1 & 3.2. Proofs Involving Negations and Conditionals

Sections 3.1 and 3.2 of How To Prove It present strategies for dealing with givens and goals
involving negations and conditionals. We restate those strategies here, and explain how to use
them with Lean.

Section 3.1 gives two strategies for proving a goal of the form P → Q (HTPI pp. 95, 96):

To prove a goal of the form P → Q:

1. Assume P is true and prove Q.
2. Assume Q is false and prove that P is false.

We’ve already seen how to carry out both of these strategies in Lean. For the first strategy,
use the assume tactic to introduce the assumption P and assign an identifier to it; Lean will
automatically set Q as the goal. We can summarize the effect of using this strategy by showing
how the tactic state changes if you use the tactic assume h : P:

Tactic State Before Using Strategy

⋮
⊢ P → Q

Tactic State After Using Strategy

⋮
h : P
⊢ Q

The second strategy is justified by the contrapositive law. In Lean, you can use the contrapos
tactic to rewrite the goal as ¬Q → ¬P and then use the tactic assume h : ¬Q. The net effect of
these two tactics is:

Tactic State Before Using Strategy

⋮
⊢ P → Q

Tactic State After Using Strategy

⋮
h : ¬Q
⊢ ¬P

Section 3.2 gives two strategies for using givens of the form P → Q, with the second once again
being a variation on the first based on the contrapositive law (HTPI p. 108):

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

22

https://doi.org/10.1017/9781108539890

3.1 & 3.2. Proofs Involving Negations and Conditionals

To use a given of the form P → Q:

1. If you are also given P, or you can prove that P is true, then you can use this given to
conclude that Q is true.

2. If you are also given ¬Q, or you can prove that Q is false, then you can use this given to
conclude that P is false.

The first strategy is the modus ponens rule of inference, and we saw in the last chapter that
if you have h1 : P → Q and h2 : P, then h1 h2 is a (term-mode) proof of Q; often we use this
rule with the have or show tactic. For the second strategy, if you have h1 : P → Q and h2 : ¬Q,
then the contrapos at h1 tactic will change h1 to h1 : ¬Q → ¬P, and then h1 h2 will be a proof
of ¬P.

All of the strategies listed above for working with conditional statements as givens or goals
were illustrated in examples in the last chapter.

Section 3.2 of HTPI offers two strategies for proving negative goals (HTPI pp. 101, 102):

To prove a goal of the form ¬P:

1. Reexpress the goal in some other form.
2. Use proof by contradiction: assume P is true and try to deduce a contradiction.

For the first strategy, the tactics demorgan, conditional, double_neg, and bicond_neg may be
useful, and we saw how those tactics work in the last chapter. But how do you write a proof
by contradiction in Lean? The answer is to use a tactic called by_contra. If the goal is ¬P,
then the tactic by_contra h will introduce the assumption h : P and set the goal to be False,
like this:

Tactic State Before Using Strategy

⋮
⊢ ¬P

Tactic State After Using Strategy

⋮
h : P
⊢ False

In Lean, False represents a statement that is always false—that is, a contradiction, as that
term is defined in Section 1.2 of HTPI. The by_contra tactic can actually be used even if the
goal is not a negative statement. If the goal is a statement P that is not a negative statement,
then by_contra h will initiate a proof by contradiction by introducing the assumption h : ¬P
and setting the goal to be False.

You will usually complete a proof by contradiction by deducing two contradictory statements—
say, h1 : Q and h2 : ¬Q. But how do you convince Lean that the proof is over? You must be
able to prove the goal False from the two givens h1 and h2. There are two ways to do this.
The first is based on the fact that Lean treats a statement of the form ¬Q as meaning the same

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

23

https://doi.org/10.1017/9781108539890

3.1 & 3.2. Proofs Involving Negations and Conditionals

thing as Q → False. This makes sense, because these statements are logically equivalent, as
shown by the following truth table:

Q ¬Q (Q → False)
F T F T F
T F T F F

Thinking of h2 : ¬Q as meaning h2 : Q → False, we can combine it with h1 : Q using modus
ponens to deduce False. In other words, h2 h1 is a proof of False.

But there is a second way of completing the proof that it is worthwhile to know about. From
contradictory statements h1 : Q and h2 : ¬Q you can validly deduce any statement. This follows
from the definition of a valid argument in Section 1.1 of HTPI. According to that definition,
you can validly infer a conclusion R from premises h1 : Q and h2 : ¬Q if the premises cannot
both be true without the conclusion also being true. In this case, that standard is met, for the
simple reason that the premises cannot both be true! (This gives part of the answer to exercise
18 in Section 1.2 of HTPI.) Thus, Lean has a rule that allows you to prove any statement from
contradictory premises. If you have h1 : Q and h2 : ¬Q, then Lean will recognize absurd h1
h2 as a (term-mode) proof of any statement.

To summarize, if you have h1 : Q and h2 : ¬Q, then there are two ways to prove False. Lean
will recognize h2 h1 as a proof of False, and it will recognize absurd h1 h2 as a proof of any
statement, including False. Notice the difference in the order in which h1 and h2 are listed
in these two proofs: In the first one, the negative statement h2 must come first, just as the
conditional statement must come first in an application of modus ponens. But in a proof using
absurd, the negative statement must come second.

To illustrate proof by contradiction in Lean, let’s redo our first example from the last Chapter
in a different way. That example was based on Example 3.2.4 in HTPI. We’ll begin with the
same first two steps, introducing two assumptions.

Lean File

theorem Example_3_2_4_v2 (P Q R : Prop)
(h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
::::
done

Tactic State in Infoview

P Q R : Prop
h : P → Q → R
h2 : ¬R
h3 : P
⊢ ¬Q

Now the goal is a negative statement, so we use the tactic by_contra h4 to introduce the
assumption h4 : Q and set the goal to be False:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

24

https://doi.org/10.1017/9781108539890

3.1 & 3.2. Proofs Involving Negations and Conditionals

Lean File

theorem Example_3_2_4_v2 (P Q R : Prop)
(h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
by_contra h4
::::
done

Tactic State in Infoview

P Q R : Prop
h : P → Q → R
h2 : ¬R
h3 : P
h4 : Q
⊢ False

Using the givens h, h3, and h4 we can deduce first Q → R and then R by two applications of
modus ponens:

Lean File

theorem Example_3_2_4_v2 (P Q R : Prop)
(h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
by_contra h4
have h5 : Q → R := h h3
have h6 : R := h5 h4
::::
done

Tactic State in Infoview

P Q R : Prop
h : P → Q → R
h2 : ¬R
h3 : P
h4 : Q
h5 : Q → R
h6 : R
⊢ False

Now we have a contradiction: h2 : ¬R and h6 : R. To complete the proof, we deduce False
from these two givens. Either h2 h6 or absurd h6 h2 would be accepted by Lean as a proof of
False:

Lean File

theorem Example_3_2_4_v2 (P Q R : Prop)
(h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
by_contra h4
have h5 : Q → R := h h3
have h6 : R := h5 h4
show False from h2 h6
done

Tactic State in Infoview

No goals

Finally, we have two strategies for using a given that is a negative statement (HTPI pp. 105,
108):

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

25

https://doi.org/10.1017/9781108539890

3.1 & 3.2. Proofs Involving Negations and Conditionals

To use a given of the form ¬P:

1. Reexpress the given in some other form.
2. If you are doing a proof by contradiction, you can achieve a contradiction by proving P,

since that would contradict the given ¬P.

Of course, strategy 1 suggests the use of the demorgan, conditional, double_neg, and bicond_neg
tactics, if they apply. For strategy 2, if you are doing a proof by contradiction and you have
a given h : ¬P, then the tactic contradict h will set the goal to be P, which will complete the
proof by contradicting h. In fact, this tactic can be used with any given; if you have a given h
: P, where P is not a negative statement, then contradict h will set the goal to be ¬P. You can
also follow the word contradict with a proof that is more complicated than a single identifier.
For example, if you have givens h1 : P → ¬Q and h2 : P, then h1 h2 is a proof of ¬Q, so the
tactic contradict h1 h2 will set the goal to be Q.

If you’re not doing a proof by contradiction, then the tactic contradict h with h' will first
initiate a proof by contradiction by assuming the negation of the goal, giving that assumption
the identifier h', and then it will set the goal to be the negation of the statement proven by h.
In other words, contradict h with h' is shorthand for by_contra h'; contradict h.

We can illustrate this with yet another way to write the proof from Example 3.2.4. Our first
three steps will be the same as last time:

Lean File

theorem Example_3_2_4_v3 (P Q R : Prop)
(h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
by_contra h4
::::
done

Tactic State in Infoview

P Q R : Prop
h : P → Q → R
h2 : ¬R
h3 : P
h4 : Q
⊢ False

Since we are now doing a proof by contradiction and the given h2 : ¬R is a negative statement,
a likely way to proceed is to try to prove R, which would contradict h2. So we use the tactic
contradict h2:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

26

https://doi.org/10.1017/9781108539890

3.1 & 3.2. Proofs Involving Negations and Conditionals

Lean File

theorem Example_3_2_4_v3 (P Q R : Prop)
(h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
by_contra h4
contradict h2
::::
done

Tactic State in Infoview

P Q R : Prop
h : P → Q → R
h2 : ¬R
h3 : P
h4 : Q
⊢ R

As before, we can now prove R by combining h, h3, and h4. In fact, we could do it in one step:
by modus ponens, h h3 is a proof of Q → R, and therefore, by another application of modus
ponens, (h h3) h4 is a proof of R. The parentheses here are not necessary; Lean will interpret
h h3 h4 as (h h3) h4, so we can complete the proof like this:

Lean File

theorem Example_3_2_4_v3 (P Q R : Prop)
(h : P → (Q → R)) : ¬R → (P → ¬Q) := by

assume h2 : ¬R
assume h3 : P
by_contra h4
contradict h2
show R from h h3 h4
done

Tactic State in Infoview

No goals

You could shorten this proof slightly by replacing the lines by_contra h4 and contradict h2
with the single line contradict h2 with h4.

There is one more idea that is introduced in Section 3.2 of HTPI. The last example in that
section illustrates how you can sometimes use rules of inference to work backwards. Here’s a
similar example in Lean:

Lean File

theorem Like_Example_3_2_5
(U : Type) (A B C : Set U) (a : U)
(h1 : a ∈ A) (h2 : a ∉ A \ B)
(h3 : a ∈ B → a ∈ C) : a ∈ C := by

::::
done

Tactic State in Infoview

U : Type
A B C : Set U
a : U
h1 : a ∈ A
h2 : a ∉ A \ B
h3 : a ∈ B → a ∈ C
⊢ a ∈ C

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

27

https://doi.org/10.1017/9781108539890

3.1 & 3.2. Proofs Involving Negations and Conditionals

The goal is a ∈ C, and the only given that even mentions C is h3 : a ∈ B → a ∈ C. If only
we could prove a ∈ B, then we could apply h3, using modus ponens, to reach our goal. So it
would make sense to work toward the goal of proving a ∈ B.

To get Lean to use this proof strategy, we use the tactic apply h3 _. The underscore here
represents a blank to be filled in by Lean. You might think of this tactic as asking Lean the
question: If we want h3 _ to be a proof of the goal a ∈ C, what do we have to put in the blank?
Lean is able to figure out that the answer is: a proof of a ∈ B. So it sets the goal to be a ∈ B,
since a proof of that goal, when inserted into the blank in h3 _, would prove the original goal
a ∈ C:

Lean File

theorem Like_Example_3_2_5
(U : Type) (A B C : Set U) (a : U)
(h1 : a ∈ A) (h2 : a ∉ A \ B)
(h3 : a ∈ B → a ∈ C) : a ∈ C := by

apply h3 _
::::
done

Tactic State in Infoview

U : Type
A B C: Set U
a : U
h1 : a ∈ A
h2 : a ∉ A \ B
h3 : a ∈ B → a ∈ C
⊢ a ∈ B

Our situation now is very much like the one in the theorem Example_3_2_5_Simple in the
previous chapter, and the rest of our proof will be similar to the proof there. The given h2 is
a negative statement (a ∉ A \ B is shorthand for ¬a ∈ A \ B), so, as suggested by our first
strategy for using negative givens, we reexpress it as an equivalent positive statement. Writing
out the definition of set difference, h2 means ¬(a ∈ A ∧ a ∉ B), and then one of De Morgan’s
laws and a conditional law allow us to rewrite it first as a ∉ A ∨ a ∈ B and then as a ∈ A → a
∈ B. Of course, we have tactics to accomplish all of these reexpressions:

Lean File

theorem Like_Example_3_2_5
(U : Type) (A B C : Set U) (a : U)
(h1 : a ∈ A) (h2 : a ∉ A \ B)
(h3 : a ∈ B → a ∈ C) : a ∈ C := by

apply h3 _
define at h2
demorgan at h2; conditional at h2
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
a : U
h1 : a ∈ A
h2 : a ∈ A → a ∈ B
h3 : a ∈ B → a ∈ C
⊢ a ∈ B

And now it is easy to complete the proof by applying modus ponens, using h2 and h1:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

28

https://doi.org/10.1017/9781108539890

3.1 & 3.2. Proofs Involving Negations and Conditionals

Lean File

theorem Like_Example_3_2_5
(U : Type) (A B C : Set U) (a : U)
(h1 : a ∈ A) (h2 : a ∉ A \ B)
(h3 : a ∈ B → a ∈ C) : a ∈ C := by

apply h3 _
define at h2
demorgan at h2; conditional at h2
show a ∈ B from h2 h1
done

Tactic State in Infoview

No goals

We will see many more uses of the apply tactic later in this book.

Sections 3.1 and 3.2 of HTPI contain several proofs that involve algebraic reasoning. Although
one can do such proofs in Lean, it requires ideas that we are not ready to introduce yet. So
for the moment we will stick to proofs involving only logic and set theory.

Exercises

Fill in proofs of the following theorems. All of them are based on exercises in HTPI.

1. theorem Exercise_3_2_1a (P Q R : Prop)
(h1 : P → Q) (h2 : Q → R) : P → R := by

::::
done

2. theorem Exercise_3_2_1b (P Q R : Prop)
(h1 : ¬R → (P → ¬Q)) : P → (Q → R) := by

::::
done

3. theorem Exercise_3_2_2a (P Q R : Prop)
(h1 : P → Q) (h2 : R → ¬Q) : P → ¬R := by

::::
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

29

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

4. theorem Exercise_3_2_2b (P Q : Prop)
(h1 : P) : Q → ¬(Q → ¬P) := by

::::
done

3.3. Proofs Involving Quantifiers

In the notation used in HTPI, if 𝑃(𝑥) is a statement about 𝑥, then ∀𝑥 𝑃(𝑥) means “for all
𝑥, 𝑃(𝑥),” and ∃𝑥 𝑃(𝑥) means “there exists at least one 𝑥 such that 𝑃(𝑥).” The letter 𝑃 here
does not stand for a proposition; it is only when it is applied to some object 𝑥 that we get a
proposition. We will say that 𝑃 is a predicate, and when we apply 𝑃 to an object 𝑥 we get the
proposition 𝑃 (𝑥). You might want to think of the predicate 𝑃 as representing some property
that an object might have, and the proposition 𝑃(𝑥) asserts that 𝑥 has that property.

To use a predicate in Lean, you must tell Lean the type of objects to which it applies. If U is
a type, then Pred U is the type of predicates that apply to objects of type U. If P has type Pred
U (that is, P is a predicate applying to objects of type U) and x has type U, then to apply P to
x we just write P x (with a space but no parentheses). Thus, if we have P : Pred U and x : U,
then P x is an expression of type Prop. That is, P x is a proposition, and its meaning is that x
has the property represented by the predicate P.

There are a few differences between the way quantified statements are written in HTPI and
the way they are written in Lean. First of all, when we apply a quantifier to a variable in Lean
we will specify the type of the variable explicitly. Also, Lean requires that after specifying the
variable and its type, you must put a comma before the proposition to which the quantifier is
applied. Thus, if P has type Pred U, then to say that P holds for all objects of type U we would
write ∀ (x : U), P x. Similarly, ∃ (x : U), P x is the proposition asserting that there exists
at least one x of type U such that P x.

And there is one more important difference between the way quantified statements are written
in HTPI and Lean. In HTPI, a quantifier is interpreted as applying to as little as possible.
Thus, ∀𝑥 𝑃(𝑥)∧𝑄(𝑥) is interpreted as (∀𝑥 𝑃(𝑥))∧𝑄(𝑥); if you want the quantifier ∀𝑥 to apply
to the entire statement 𝑃(𝑥)∧𝑄(𝑥) you must use parentheses and write ∀𝑥(𝑃(𝑥)∧𝑄(𝑥)). The
convention in Lean is exactly the opposite: a quantifier applies to as much as possible. Thus,
Lean will interpret ∀ (x : U), P x ∧ Q x as meaning ∀ (x : U), (P x ∧ Q x). If you want the
quantifier to apply to only P x, then you must use parentheses and write (∀ (x : U), P x) ∧
Q x.

With this preparation, we are ready to consider how to write proofs involving quantifiers in
Lean. The most common way to prove a goal of the form ∀ (x : U), P x is to use the following
strategy (HTPI p. 114):

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

30

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

To prove a goal of the form ∀ (x : U), P x:

Let x stand for an arbitrary object of type U and prove P x. If the letter x is already being
used in the proof to stand for something, then you must choose an unused variable, say y,
to stand for the arbitrary object, and prove P y.

To do this in Lean, you should use the tactic fix x : U, which tells Lean to treat x as standing
for some fixed but arbitrary object of type U. This has the following effect on the tactic state:

Tactic State Before Using Strategy

⋮
⊢ ∀ (x : U), P x

Tactic State After Using Strategy

⋮
x : U
⊢ P x

To use a given of the form ∀ (x : U), P x, we usually apply a rule of inference called universal
instantiation, which is described by the following proof strategy (HTPI p. 121):

To use a given of the form ∀ (x : U), P x:

You may plug in any value of type U, say a, for x and use this given to conclude that P a is
true.

This strategy says that if you have h : ∀ (x : U), P x and a : U, then you can infer P a.
Indeed, in this situation Lean will recognize h a as a proof of P a. For example, you can write
have h' : P a := h a in a Lean tactic-mode proof, and Lean will add h' : P a to the tactic
state. Note that a here need not be simply a variable; it can be any expression denoting an
object of type U.

Let’s try these strategies out in a Lean proof. In Lean, if you don’t want to give a theorem
a name, you can simply call it an example rather than a theorem, and then there is no need
to give it a name. In the following example, you can enter the symbol ∀ by typing \forall or
\all, and you can enter ∃ by typing \exists or \ex.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x → ¬Q x)
(h2 : ∀ (x : U), Q x) :
¬∃ (x : U), P x := by

::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), P x → ¬Q x
h2 : ∀ (x : U), Q x
⊢ ¬∃ (x : U), P x

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

31

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

To use the givens h1 and h2, we will probably want to use universal instantiation. But to do
that we would need an object of type U to plug in for x in h1 and h2, and there is no object of
type U in the tactic state. So at this point, we can’t apply universal instantiation to h1 and h2.
We should watch for an object of type U to come up in the course of the proof, and consider
applying universal instantiation if one does. Until then, we turn our attention to the goal.

The goal is a negative statement, so we begin by reexpressing it as an equivalent positive
statement, using a quantifier negation law. The tactic quant_neg applies a quantifier negation
law to rewrite the goal. As with the other tactics for applying logical equivalences, you can
write quant_neg at h if you want to apply a quantifier negation law to a given h. The effect of
the tactic can be summarized as follows:

quant_neg Tactic
¬∀ (x : U), P x is changed to ∃ (x : U), ¬P x
¬∃ (x : U), P x is changed to ∀ (x : U), ¬P x
∀ (x : U), P x is changed to ¬∃ (x : U), ¬P x
∃ (x : U), P x is changed to ¬∀ (x : U), ¬P x

Using the quant_neg tactic leads to the following result.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x → ¬Q x)
(h2 : ∀ (x : U), Q x) :
¬∃ (x : U), P x := by

quant_neg --Goal is now ∀ (x : U), ¬P x
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), P x → ¬Q x
h2 : ∀ (x : U), Q x
⊢ ∀ (x : U), ¬P x

Now the goal starts with ∀, so we use the strategy above and introduce an arbitrary object of
type U. Since the variable x occurs as a bound variable in several statements in this theorem, it
might be best to use a different letter for the arbitrary object; this isn’t absolutely necessary,
but it may help to avoid confusion. So our next tactic is fix y : U.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x → ¬Q x)
(h2 : ∀ (x : U), Q x) :
¬∃ (x : U), P x := by

quant_neg --Goal is now ∀ (x : U), ¬P x
fix y : U
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), P x → ¬Q x
h2 : ∀ (x : U), Q x
y : U
⊢ ¬P y

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

32

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Now we have an object of type U in the tactic state, namely, y. So let’s try applying universal
instantiation to h1 and h2 and see if it helps.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x → ¬Q x)
(h2 : ∀ (x : U), Q x) :
¬∃ (x : U), P x := by

quant_neg --Goal is now ∀ (x : U), ¬P x
fix y : U
have h3 : P y → ¬Q y := h1 y
have h4 : Q y := h2 y
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), P x → ¬Q x
h2 : ∀ (x : U), Q x
y : U
h3 : P y → ¬Q y
h4 : Q y
⊢ ¬P y

We’re almost done, because the goal now follows easily from h3 and h4. If we use the contra-
positive law to rewrite h3 as Q y → ¬P y, then we can apply modus ponens to the rewritten h3
and h4 to reach the goal:

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x → ¬Q x)
(h2 : ∀ (x : U), Q x) :
¬∃ (x : U), P x := by

quant_neg --Goal is now ∀ (x : U), ¬P x
fix y : U
have h3 : P y → ¬Q y := h1 y
have h4 : Q y := h2 y
contrapos at h3 --Now h3 : Q y → ¬P y
show ¬P y from h3 h4
done

Tactic State in Infoview

No goals

Our next example is a theorem of set theory. You already know how to type a few set theory
symbols in Lean, but you’ll need a few more for our next example. Here’s a summary of the
most important set theory symbols and how to type them in Lean.

Symbol How To Type It
∈ \in
∉ \notin or \inn
⊆ \sub
⊈ \subn
= =

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

33

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Symbol How To Type It
≠ \ne
∪ \union or \cup
∩ \inter or \cap
\ \\
∆ \symmdiff
∅ \emptyset
P \powerset

With this preparation, we can turn to our next example.

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ∀ x ∈ A, x ∉ B
⊢ A ⊆ C

Notice that in the Infoview, Lean has written h2 as ∀ x ∈ A, x ∉ B, using a bounded quantifier.
As explained in Section 2.2 of HTPI (see p. 72), this is a shorter way of writing the statement
∀ (x : U), x ∈ A → x ∉ B. We begin by using the define tactic to write out the definition of
the goal.

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

define --Goal : ∀ ⦃a : U⦄, a ∈ A → a ∈ C
::::
done

Tactic State in Infoview

U : Type
A B C: Set U
h1 : A ⊆ B ∪ C
h2 : ∀ x ∈ A, x ∉ B
⊢ ∀ ⦃a : U⦄,
a ∈ A → a ∈ C

Notice that Lean’s definition of the goal starts with ∀ ⦃a : U⦄, not ∀ (a : U). Why did Lean
use those funny double braces rather than parentheses? We’ll return to that question shortly.
The difference doesn’t affect our next steps, which are to introduce an arbitrary object y of
type U and assume y ∈ A.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

34

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

define --Goal : ∀ ⦃a : U⦄, a ∈ A → a ∈ C
fix y : U
assume h3 : y ∈ A
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ∀ x ∈ A, x ∉ B
y : U
h3 : y ∈ A
⊢ y ∈ C

Now we can combine h2 and h3 to conclude that y ∉ B. Since we have y : U, by universal
instantiation, h2 y is a proof of y ∈ A → y ∉ B, and therefore by modus ponens, h2 y h3 is a
proof of y ∉ B.

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

define --Goal : ∀ ⦃a : U⦄, a ∈ A → a ∈ C
fix y : U
assume h3 : y ∈ A
have h4 : y ∉ B := h2 y h3
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ∀ x ∈ A, x ∉ B
y : U
h3 : y ∈ A
h4 : y ∉ B
⊢ y ∈ C

We should be able to use similar reasoning to combine h1 and h3, if we first write out the
definition of h1.

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

define --Goal : ∀ ⦃a : U⦄, a ∈ A → a ∈ C
fix y : U
assume h3 : y ∈ A
have h4 : y ∉ B := h2 y h3
define at h1 --h1 : ∀ ⦃a : U⦄, a ∈ A → a ∈ B ∪ C
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : ∀ ⦃a : U⦄,
a ∈ A → a ∈ B ∪ C

h2 : ∀ x ∈ A, x ∉ B
y : U
h3 : y ∈ A
h4 : y ∉ B
⊢ y ∈ C

Once again, Lean has used double braces to define h1, and now we are ready to explain what
they mean. If the definition had been h1 : ∀ (a : U), a ∈ A → a ∈ B ∪ C, then exactly as
in the previous step, h1 y h3 would be a proof of y ∈ B ∪ C. The use of double braces in the
definition h1 : ∀ ⦃a : U⦄, a ∈ A → a ∈ B ∪ C means that you don’t need to tell Lean that

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

35

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

y is being plugged in for a in the universal instantiation step; Lean will figure that out on its
own. Thus, you can just write h1 h3 as a proof of y ∈ B ∪ C. Indeed, if you write h1 y h3 then
you will get an error message, because Lean expects not to be told what to plug in for a. You
might think of the definition of h1 as meaning h1 : _ ∈ A → _ ∈ B ∪ C, where the blanks can
be filled in with anything of type U (with the same thing being put in both blanks). When you
ask Lean to apply modus ponens by combining this statement with h3 : y ∈ A, Lean figures
out that in order for modus ponens to apply, the blanks must be filled in with y.

In this situation, the a in h1 is called an implicit argument. What this means is that, when h1 is
applied to make an inference in a proof, the value to be assigned to a is not specified explicitly;
rather, the value is inferred by Lean. We will see many more examples of implicit arguments
later in this book. In fact, there are two slightly different kinds of implicit arguments in
Lean. One kind is indicated using the double braces ⦃ ⦄ used in this example, and the other is
indicated using curly braces, { }. The difference between these two kinds of implicit arguments
won’t be important in this book; all that will matter to us is that if you see either ∀ ⦃a : U⦄ or
∀ {a : U} rather than ∀ (a : U), then you must remember that a is an implicit argument.

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

define --Goal : ∀ ⦃a : U⦄, a ∈ A → a ∈ C
fix y : U
assume h3 : y ∈ A
have h4 : y ∉ B := h2 y h3
define at h1 --h1 : ∀ ⦃a : U⦄, a ∈ A → a ∈ B ∪ C
have h5 : y ∈ B ∪ C := h1 h3
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : ∀ ⦃a : U⦄,
a ∈ A → a ∈ B ∪ C

h2 : ∀ x ∈ A, x ∉ B
y : U
h3 : y ∈ A
h4 : y ∉ B
h5 : y ∈ B ∪ C
⊢ y ∈ C

If Lean was able to figure out that y should be plugged in for a in h1 in this step, couldn’t it
have figured out that y should be plugged in for x in h2 in the previous have step? The answer
is yes. Of course, in h2, x was not an implicit argument, so Lean wouldn’t automatically figure
out what to plug in for x. But we could have asked it to figure it out by writing the proof
in the previous step as h2 _ h3 rather than h2 y h3. In a term-mode proof, an underscore
represents a blank to be filled in by Lean. Try changing the earlier step of the proof to have
h4 : y ∉ B := h2 _ h3 and you will see that Lean will accept it. Of course, in this case this
doesn’t save us any typing, but in some situations it is useful to let Lean figure out some part
of a proof.

Lean’s ability to fill in blanks in term-mode proofs is limited. For example, if you try changing
the previous step to have h4 : y ∉ B := h2 y _, you’ll get a red squiggle under the blank, and
the error message in the Infoview pane will say don't know how to synthesize placeholder.
In other words, Lean was unable to figure out how to fill in the blank in this case. In future

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

36

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

proofs you might try replacing some expressions with blanks to get a feel for what Lean can
and cannot figure out for itself.

Continuing with the proof, we see that we’re almost done, because we can combine h4 and h5
to reach our goal. To see how, we first write out the definition of h5.

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

define --Goal : ∀ ⦃a : U⦄, a ∈ A → a ∈ C
fix y : U
assume h3 : y ∈ A
have h4 : y ∉ B := h2 y h3
define at h1 --h1 : ∀ ⦃a : U⦄, a ∈ A → a ∈ B ∪ C
have h5 : y ∈ B ∪ C := h1 h3
define at h5 --h5 : y ∈ B ∨ y ∈ C
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : ∀ ⦃a : U⦄,
a ∈ A → a ∈ B ∪ C

h2 : ∀ x ∈ A, x ∉ B
y : U
h3 : y ∈ A
h4 : y ∉ B
h5 : y ∈ B ∨ y ∈ C
⊢ y ∈ C

A conditional law will convert h5 to y ∉ B → y ∈ C, and then modus ponens with h4 will
complete the proof.

Lean File

example (U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ∀ (x : U), x ∈ A → x ∉ B) : A ⊆ C := by

define --Goal : ∀ ⦃a : U⦄, a ∈ A → a ∈ C
fix y : U
assume h3 : y ∈ A
have h4 : y ∉ B := h2 y h3
define at h1 --h1 : ∀ ⦃a : U⦄, a ∈ A → a ∈ B ∪ C
have h5 : y ∈ B ∪ C := h1 h3
define at h5 --h5 : y ∈ B ∨ y ∈ C
conditional at h5 --h5 : y ∉ B → y ∈ C
show y ∈ C from h5 h4
done

Tactic State in Infoview

No goals

Next we turn to strategies for working with existential quantifiers (HTPI p. 118).

To prove a goal of the form ∃ (x : U), P x:

Find a value of x, say a, for which you think P a is true, and prove P a.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

37

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

This strategy is based on the fact that if you have a : U and h : P a, then you can infer ∃
(x : U), P x. Indeed, in this situation the expression Exists.intro a h is a Lean term-mode
proof of ∃ (x : U), P x. The name Exists.intro indicates that this is a rule for introducing
an existential quantifier.

Note that, as with the universal instantiation rule, a here can be any expression denoting an
object of type U; it need not be simply a variable. For example, if A and B have type Set U, F
has type Set (Set U), and you have a given h : A ∪ B ∈ F, then Exists.intro (A ∪ B) h is a
proof of ∃ (x : Set U), x ∈ F.

As suggested by the strategy above, we will often want to use the Exists.intro rule in situations
in which our goal is ∃ (x : U), P x and we have an object a of type U that we think makes
P a true, but we don’t yet have a proof of P a. In that situation we can use the tactic apply
Exists.intro a _. Recall that the apply tactic asks Lean to figure out what to put in the blank
to turn Exists.intro a _ into a proof of the goal. Lean will figure out that what needs to go
in the blank is a proof of P a, so it sets P a to be the goal. In other words, the tactic apply
Exists.intro a _ has the following effect on the tactic state:

Tactic State Before Using Strategy

⋮
a : U
⊢ ∃ (x : U), P x

Tactic State After Using Strategy

⋮
a : U
⊢ P a

Our strategy for using an existential given is a rule that is called existential instantiation in
HTPI (HTPI p. 120):

To use a given of the form ∃ (x : U), P x:

Introduce a new variable, say u, into the proof to stand for an object of type U for which P
u is true.

Suppose that, in a Lean proof, you have h : ∃ (x : U), P x. To apply the existential
instantiation rule, you would use the tactic obtain (u : U) (h' : P u) from h. This tactic
introduces into the tactic state both a new variable u of type U and also the identifier h' for
the new given P u. Note that h can be any proof of a statement of the form ∃ (x : U), P x; it
need not be just a single identifier.

Often, if your goal is an existential statement ∃ (x : U), P x, you won’t be able to use the
strategy above for existential goals right away, because you won’t know what object a to use
in the tactic apply Exists.intro a _. You may have to wait until a likely candidate for a pops
up in the course of the proof. On the other hand, it is usually best to use the obtain tactic
right away if you have an existential given. This is illustrated in our next example.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

38

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), ∃ (y : U),
P x → ¬Q y

h2 : ∃ (x : U), ∀ (y : U),
P x → Q y

⊢ ∃ (x : U), ¬P x

The goal is the existential statement ∃ (x : U), ¬P x, and our strategy for existential goals
says that we should try to find an object a of type U that we think would make the statement
¬P a true. But we don’t have any objects of type U in the tactic state, so it looks like we can’t
use that strategy yet. Similarly, we can’t use the given h1 yet, since we have nothing to plug
in for x in h1. However, h2 is an existential given, and we can use it right away.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

obtain (a : U)
(h3 : ∀ (y : U), P a → Q y) from h2

::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), ∃ (y : U),
P x → ¬Q y

h2 : ∃ (x : U), ∀ (y : U),
P x → Q y

a : U
h3 : ∀ (y : U), P a → Q y
⊢ ∃ (x : U), ¬P x

Now that we have a : U, we can apply universal instantiation to h1, plugging in a for x.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

obtain (a : U)
(h3 : ∀ (y : U), P a → Q y) from h2

have h4 : ∃ (y : U), P a → ¬ Q y := h1 a
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), ∃ (y : U),
P x → ¬Q y

h2 : ∃ (x : U), ∀ (y : U),
P x → Q y

a : U
h3 : ∀ (y : U), P a → Q y
h4 : ∃ (y : U), P a → ¬Q y
⊢ ∃ (x : U), ¬P x

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

39

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

By the way, this is another case in which Lean could have figured out a part of the proof on
its own. Try changing h1 a in the last step to h1 _, and you’ll see that Lean will be able to
figure out how to fill in the blank.

Our new given h4 is another existential statement, so again we use it right away to introduce
another object of type U. Since this object might not be the same as a, we must give it a
different name. (Indeed, if you try to use the name a again, Lean will give you an error
message.)

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

obtain (a : U)
(h3 : ∀ (y : U), P a → Q y) from h2

have h4 : ∃ (y : U), P a → ¬ Q y := h1 a
obtain (b : U) (h5 : P a → ¬ Q b) from h4
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), ∃ (y : U),
P x → ¬Q y

h2 : ∃ (x : U), ∀ (y : U),
P x → Q y

a : U
h3 : ∀ (y : U), P a → Q y
h4 : ∃ (y : U), P a → ¬Q y
b : U
h5 : P a → ¬Q b
⊢ ∃ (x : U), ¬P x

We have not yet used h3. We could plug in either a or b for y in h3, but a little thought should
show you that plugging in b is more useful.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

obtain (a : U)
(h3 : ∀ (y : U), P a → Q y) from h2

have h4 : ∃ (y : U), P a → ¬ Q y := h1 a
obtain (b : U) (h5 : P a → ¬ Q b) from h4
have h6 : P a → Q b := h3 b
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), ∃ (y : U),
P x → ¬Q y

h2 : ∃ (x : U), ∀ (y : U),
P x → Q y

a : U
h3 : ∀ (y : U), P a → Q y
h4 : ∃ (y : U), P a → ¬Q y
b : U
h5 : P a → ¬Q b
h6 : P a → Q b
⊢ ∃ (x : U), ¬P x

Now look at h5 and h6. They show that P a leads to contradictory conclusions, ¬Q b and Q

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

40

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

b. This means that P a must be false. We finally know what value of x to use to prove the
goal.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

obtain (a : U)
(h3 : ∀ (y : U), P a → Q y) from h2

have h4 : ∃ (y : U), P a → ¬ Q y := h1 a
obtain (b : U) (h5 : P a → ¬ Q b) from h4
have h6 : P a → Q b := h3 b
apply Exists.intro a _
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), ∃ (y : U),
P x → ¬Q y

h2 : ∃ (x : U), ∀ (y : U),
P x → Q y

a : U
h3 : ∀ (y : U), P a → Q y
h4 : ∃ (y : U), P a → ¬Q y
b : U
h5 : P a → ¬Q b
h6 : P a → Q b
⊢ ¬P a

Since the goal is now a negative statement that cannot be reexpressed as a positive statement,
we use proof by contradiction.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

obtain (a : U)
(h3 : ∀ (y : U), P a → Q y) from h2

have h4 : ∃ (y : U), P a → ¬ Q y := h1 a
obtain (b : U) (h5 : P a → ¬ Q b) from h4
have h6 : P a → Q b := h3 b
apply Exists.intro a _
by_contra h7
::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), ∃ (y : U),
P x → ¬Q y

h2 : ∃ (x : U), ∀ (y : U),
P x → Q y

a : U
h3 : ∀ (y : U), P a → Q y
h4 : ∃ (y : U), P a → ¬Q y
b : U
h5 : P a → ¬Q b
h6 : P a → Q b
h7 : P a
⊢ False

Now h5 h7 is a proof of ¬Q b and h6 h7 is a proof of Q b, so h5 h7 (h6 h7) is a proof of False.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

41

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), ∃ (y : U), P x → ¬ Q y)
(h2 : ∃ (x : U), ∀ (y : U), P x → Q y) :
∃ (x : U), ¬P x := by

obtain (a : U)
(h3 : ∀ (y : U), P a → Q y) from h2

have h4 : ∃ (y : U), P a → ¬ Q y := h1 a
obtain (b : U) (h5 : P a → ¬ Q b) from h4
have h6 : P a → Q b := h3 b
apply Exists.intro a _
by_contra h7
show False from h5 h7 (h6 h7)
done

Tactic State in Infoview

No goals

We conclude this section with the theorem from Example 3.3.5 in HTPI. That theorem concerns
a union of a family of sets. In HTPI, such a union is written using a large union symbol, ⋃.
Lean uses the symbol ⋃₀, which is entered by typing \U0 (that is, backslash–capital U–zero).
For an intersection of a family of sets, Lean uses ⋂₀, typed as \I0.

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
⊢ ⋃₀ F ⊆ B → F ⊆ P B

Note that F has type Set (Set U), which means that it is a set whose elements are sets of
objects of type U. Since the goal is a conditional statement, we assume the antecedent and set
the consequent as our goal. We’ll also write out the definition of the new goal.

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
h1 : ⋃₀ F ⊆ B
⊢ ∀ ⦃a : Set U⦄,
a ∈ F → a ∈ P B

Based on the form of the goal, we introduce an arbitrary object x of type Set U and assume x
∈ F. The new goal will be x ∈ P B. The define tactic works out that this means x ⊆ B, which
can be further expanded to ∀ ⦃a : U⦄, a ∈ x → a ∈ B.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

42

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
fix x : Set U
assume h2 : x ∈ F
define
::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
h1 : ⋃₀ F ⊆ B
x : Set U
h2 : x ∈ F
⊢ ∀ ⦃a : U⦄,
a ∈ x → a ∈ B

Once again the form of the goal dictates our next steps: introduce an arbitrary y of type U
and assume y ∈ x.

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
fix x : Set U
assume h2 : x ∈ F
define
fix y : U
assume h3 : y ∈ x
::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
h1 : ⋃₀ F ⊆ B
x : Set U
h2 : x ∈ F
y : U
h3 : y ∈ x
⊢ y ∈ B

The goal can be analyzed no further, so we turn to the givens. We haven’t used h1 yet. To
see how to use it, we write out its definition.

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
fix x : Set U
assume h2 : x ∈ F
define
fix y : U
assume h3 : y ∈ x
define at h1
::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
h1 : ∀ ⦃a : U⦄,
a ∈ ⋃₀ F → a ∈ B

x : Set U
h2 : x ∈ F
y : U
h3 : y ∈ x
⊢ y ∈ B

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

43

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Now we see that we can try to use h1 to reach our goal. Indeed, h1 _ would be a proof of the
goal if we could fill in the blank with a proof of y ∈ ∪₀F. So we use the apply h1 _ tactic.

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
fix x : Set U
assume h2 : x ∈ F
define
fix y : U
assume h3 : y ∈ x
define at h1
apply h1 _
::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
h1 : ∀ ⦃a : U⦄,
a ∈ ⋃₀ F → a ∈ B

x : Set U
h2 : x ∈ F
y : U
h3 : y ∈ x
⊢ y ∈ ⋃₀ F

Once again we have a goal that can be analyzed by using the define tactic.

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
fix x : Set U
assume h2 : x ∈ F
define
fix y : U
assume h3 : y ∈ x
define at h1
apply h1 _
define
::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
h1 : ∀ ⦃a : U⦄,
a ∈ ⋃₀ F → a ∈ B

x : Set U
h2 : x ∈ F
y : U
h3 : y ∈ x
⊢ ∃ t ∈ F, y ∈ t

Our goal now is ∃ (t : Set U), t ∈ F ∧ y ∈ t, although once again Lean has used a bounded
quantifier to write this in a shorter form. So we look for a value of t that will make the
statement t ∈ F ∧ y ∈ t true. The givens h2 and h3 tell us that x is such a value, so as
described earlier our next tactic should be apply Exists.intro x _.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

44

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
fix x : Set U
assume h2 : x ∈ F
define
fix y : U
assume h3 : y ∈ x
define at h1
apply h1 _
define
apply Exists.intro x _
::::
done

Tactic State in Infoview

U : Type
B : Set U
F : Set (Set U)
h1 : ∀ ⦃a : U⦄,
a ∈ ⋃₀ F → a ∈ B

x : Set U
h2 : x ∈ F
y : U
h3 : y ∈ x
⊢ x ∈ F ∧ y ∈ x

Clearly the goal now follows from h2 and h3, but how do we write the proof in Lean? Since
we need to introduce the “and” symbol ∧, you shouldn’t be surprised to learn that the rule we
need is called And.intro. Proof strategies for statements involving “and” will be the subject
of the next section.

Lean File

theorem Example_3_3_5 (U : Type) (B : Set U)
(F : Set (Set U)) : ⋃₀ F ⊆ B → F ⊆ P B := by

assume h1 : ⋃₀ F ⊆ B
define
fix x : Set U
assume h2 : x ∈ F
define
fix y : U
assume h3 : y ∈ x
define at h1
apply h1 _
define
apply Exists.intro x _
show x ∈ F ∧ y ∈ x from And.intro h2 h3
done

Tactic State in Infoview

No goals

You might want to compare the Lean proof above to the way the proof was written in HTPI.
Here are the theorem and proof from HTPI (HTPI p. 125):

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

45

https://doi.org/10.1017/9781108539890

3.3. Proofs Involving Quantifiers

Theorem. Suppose 𝐵 is a set and ℱ is a family of sets. If ⋃ ℱ ⊆ 𝐵 then ℱ ⊆ P(𝐵).

Proof. Suppose ⋃ ℱ ⊆ 𝐵. Let 𝑥 be an arbitrary element of ℱ. Let 𝑦 be an arbitrary element
of 𝑥. Since 𝑦 ∈ 𝑥 and 𝑥 ∈ ℱ, by the definition of ⋃ ℱ, 𝑦 ∈ ⋃ ℱ. But then since ⋃ ℱ ⊆ 𝐵,
𝑦 ∈ 𝐵. Since 𝑦 was an arbitrary element of 𝑥, we can conclude that 𝑥 ⊆ 𝐵, so 𝑥 ∈ P(𝐵). But
𝑥 was an arbitrary element of ℱ, so this shows that ℱ ⊆ P(𝐵), as required.

Exercises

1. theorem Exercise_3_3_1
(U : Type) (P Q : Pred U) (h1 : ∃ (x : U), P x → Q x) :
(∀ (x : U), P x) → ∃ (x : U), Q x := by

::::
done

2. theorem Exercise_3_3_8 (U : Type) (F : Set (Set U)) (A : Set U)
(h1 : A ∈ F) : A ⊆ ⋃₀ F := by

::::
done

3. theorem Exercise_3_3_9 (U : Type) (F : Set (Set U)) (A : Set U)
(h1 : A ∈ F) : ⋂₀ F ⊆ A := by

::::
done

4. theorem Exercise_3_3_10 (U : Type) (B : Set U) (F : Set (Set U))
(h1 : ∀ (A : Set U), A ∈ F → B ⊆ A) : B ⊆ ⋂₀ F := by

::::
done

5. theorem Exercise_3_3_13 (U : Type)
(F G : Set (Set U)) : F ⊆ G → ⋂₀ G ⊆ ⋂₀ F := by

::::
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

46

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

3.4. Proofs Involving Conjunctions and Biconditionals

The strategies in HTPI for working with conjunctions are very simple (HTPI p. 130).

To prove a goal of the form P ∧ Q:

Prove P and Q separately.

We already saw an example, at the end of the last section, of the use of the rule And.intro
to prove a conjunction. In general, if you have h1 : P and h2 : Q, then And.intro h1 h2 is a
proof of P ∧ Q. It follows that if your goal is P ∧ Q but you don’t yet have proofs of P and Q,
then you can use the tactic apply And.intro _ _. Lean will figure out that the blanks need to
be filled in with proofs of P and Q, so it will ask you to prove P and Q separately, as suggested
by the strategy above.

If you already have a proof of either P or Q, then you can fill in one of the blanks in the apply
tactic. For example, if you have h : P, then you can write apply And.intro h _, and Lean
will tell you that you just have to prove Q to complete the proof. Similarly, if you have h :
Q, then apply And.intro _ h will lead to just the single goal P. There is also a shortcut you
can use with the apply tactic: any blanks that come at the end of the tactic can be left out.
So instead of apply And.intro _ _, you can just write apply And.intro, and instead of apply
And.intro h _, you can write apply And.intro h. On the other hand, apply And.intro _ h
can’t be shortened; it is only blanks at the end that can be left out.

The strategy for a given that is a conjunction is similar (HTPI p. 131).

To use a given of the form P ∧ Q:

Treat this as two separate givens: P, and Q.

If you have a given h : P ∧ Q, then Lean will recognize h.left as a proof of P, and h.right as
a proof of Q.

Here’s an example that illustrates these strategies. It is similar to Example 3.4.1 in HTPI

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

::::
done

Tactic State in Infoview

U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
⊢ A ∩ C ⊆ B \ D

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

47

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

The define tactic will rewrite the goal as ∀ ⦃a : U⦄, a ∈ A ∩ C → a ∈ B \ D, and then we can
introduce an arbitrary x : U and assume x ∈ A ∩ C.

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
::::
done

Tactic State in Infoview

U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∩ C
⊢ x ∈ B \ D

Now let’s take a look at the definitions of h3 and the goal:

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
define at h3; define
::::
done

Tactic State in Infoview

U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∧ x ∈ C
⊢ x ∈ B ∧ x ∉ D

Since the goal is now a conjunction, we apply the strategy above by using the tactic apply
And.intro.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

48

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
define at h3; define
apply And.intro
::::
done

Tactic State in Infoview

▼ case left
U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∧ x ∈ C
⊢ x ∈ B
▼ case right
U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∧ x ∈ C
⊢ x ∉ D

Look carefully at the tactic state. Lean has listed two goals, one after the other, and it has
helpfully labeled them “case left” and “case right,” indicating that the first goal is to prove
the left side of the conjunction and the second is to prove the right. The given information in
both cases is the same, but in the first case the goal is x ∈ B, and in the second it is x ∉ D. At
this point, if we simply continue with the proof, Lean will interpret our tactics as applying to
the first goal, until we achieve that goal. Once we achieve it, Lean will move on to the second
goal.

However, we can make our proof more readable by separating and labeling the proofs of the
two goals. To do this, we type a bullet (which looks like this: ·) and then a comment describing
the first goal. (To type a bullet, type \.—that is, backslash–period.) The proof of the first
goal will appear below this line, indented further and ending with done. To prepare for this,
we leave a blank line, type tab to increase the indenting, and then type done. Then we do
the same for the second goal: on the next line, we return to the previous level of indenting
and type a bullet and a comment describing the second goal. We follow this with a blank line
and then an indented done to indicate the end of the proof of the second goal. We’re going to
work on the first goal first, so we click on the first blank line to position the cursor there. The
screen now looks like this:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

49

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
define at h3; define
apply And.intro
· -- Proof that x ∈ B

::::
done

· -- Proof that x ∉ D

::::
done

done

Tactic State in Infoview

▼ case left
U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∧ x ∈ C
⊢ x ∈ B

Of course, there are red squiggles under both new occurrences of done, since neither goal has
yet been achieved. We can work on the goals in either order by positioning the cursor on
either blank line, and the Infoview pane will show the tactic state for the goal at the position
of the cursor. In the display above, we have positioned the cursor on the first blank line, so
the Infoview shows the tactic state for the first goal.

This first goal is easy: We have h1 : A ⊆ B and, as explained above, h3.left : x ∈ A. As we
have seen in several previous examples, the tactic define at h1 will rewrite h1 as ∀ ⦃a : U⦄,
a ∈ A → a ∈ B, and then h1 h3.left will be a proof of x ∈ B. And now we’ll let you in on a
little secret: usually the define tactic isn’t really necessary. You may find the define tactic
to be useful in many situations, because it helps you see what a statement means. But Lean
doesn’t need to be told to work out what the statement means; it will do that automatically.
So we can skip the define tactic and just give h1 h3.left as a proof of x ∈ B. In general, if you
have h1 : A ⊆ B and h2 : x ∈ A, then Lean will recognize h1 h2 as a proof of x ∈ B. Thus, the
tactic show x ∈ B from h1 h3.left will complete the first goal. Once we type this (indented
to the same position as the done for the first goal), the red squiggle disappears from the first
done, and the tactic state shows the No goals message. If we then click on the blank line for
the second goal, the Infoview pane shows the tactic state for that goal:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

50

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
define at h3; define
apply And.intro
· -- Proof that x ∈ B:

show x ∈ B from h1 h3.left
done

· -- Proof that x ∉ D

::::
done

done

Tactic State in Infoview

▼ case right
U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∧ x ∈ C
⊢ x ∉ D

The second goal is a negative statement, and the given h2 is also a negative statement. This
suggests using proof by contradiction, and achieving the contradiction by contradicting h2.

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
define at h3; define
apply And.intro
· -- Proof that x ∈ B.

show x ∈ B from h1 h3.left
done

· -- Proof that x ∉ D.
contradict h2 with h4
::::
done

done

Tactic State in Infoview

▼ case right
U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∧ x ∈ C
h4 : x ∈ D
⊢ ∃ (c : U), c ∈ C ∩ D

The goal is now an existential statement, and looking at h3 and h4 it is clear that the right
value to plug in for c in the goal is x. The tactic apply Exists.intro x will change the goal to
x ∈ C ∩ D (we have again left off the unnecessary blank at the end of the apply tactic).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

51

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
define at h3; define
apply And.intro
· -- Proof that x ∈ B.

show x ∈ B from h1 h3.left
done

· -- Proof that x ∉ D.
contradict h2 with h4
apply Exists.intro x
::::
done

done

Tactic State in Infoview

▼ case right
U : Type
A B C D : Set U
h1 : A ⊆ B
h2 : ¬∃ (c : U), c ∈ C ∩ D
x : U
h3 : x ∈ A ∧ x ∈ C
h4 : x ∈ D
⊢ x ∈ C ∩ D

The define tactic would now rewrite the goal as x ∈ C ∧ x ∈ D, and we could prove this goal
by combining h3.right and h4, using the And.intro rule. But since we know what the result
of the define tactic will be, there is really no need to use it. We can just use And.intro right
away to complete the proof.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

52

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

theorem Like_Example_3_4_1 (U : Type)
(A B C D : Set U) (h1 : A ⊆ B)
(h2 : ¬∃ (c : U), c ∈ C ∩ D) :
A ∩ C ⊆ B \ D := by

define
fix x : U
assume h3 : x ∈ A ∩ C
define at h3; define
apply And.intro
· -- Proof that x ∈ B.

show x ∈ B from h1 h3.left
done

· -- Proof that x ∉ D.
contradict h2 with h4
apply Exists.intro x
show x ∈ C ∩ D from And.intro h3.right h4
done

done

Tactic State in Infoview

No goals

Since P ↔ Q is shorthand for (P → Q) ∧ (Q → P), the strategies given above for conjunctions
lead immediately to the following strategies for biconditionals (HTPI p. 132):

To prove a goal of the form P ↔ Q:

Prove P → Q and Q → P separately.

To use a given of the form P ↔ Q:

Treat this as two separate givens: P → Q, and Q → P.

The methods for using these strategies in Lean are similar to those we used above for conjunc-
tions. If we have h1 : P → Q and h2 : Q → P, then Iff.intro h1 h2 is a proof of P ↔ Q. Thus, if
the goal is P ↔ Q, then the tactic apply Iff.intro _ _ will convert this into two separate goals,
P → Q and Q → P. Once again, you can fill in one of these blanks if you already have a proof of
either P → Q or Q → P, and you can leave out any blanks at the end of the tactic. If you have a
given h : P ↔ Q, then h.ltr is a proof of the left-to-right direction of the biconditional, P → Q,
and h.rtl is a proof of the right-to-left direction, Q → P.

Let’s try these strategies out in an example.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

53

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

::::
done

Tactic State in Infoview

U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
⊢ (∃ (x : U), P x) ↔
∃ (x : U), Q x

The goal is a biconditional statement, so we begin with the tactic apply Iff.intro.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
::::
done

Tactic State in Infoview

▼ case mp
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
⊢ (∃ (x : U), P x) →
∃ (x : U), Q x

▼ case mpr
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
⊢ (∃ (x : U), Q x) →
∃ (x : U), P x

Once again, we have two goals. (The case labels this time aren’t very intuitive; “mp” stands for
“modus ponens” and “mpr” stands for “modus ponens reverse”.) Whenever we have multiple
goals, we’ll use the bulleted-and-indented style introduced in the last example. As in HTPI,
we’ll label the proofs of the two goals with (→) and (←), representing the two directions of the
biconditional symbol ↔. (You can type ← in VS Code by typing \l, short for “left”.) The first
goal is a conditional statement, so we assume the antecedent.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

54

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
· -- (→)

assume h2 : ∃ (x : U), P x
::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
h2 : ∃ (x : U), P x
⊢ ∃ (x : U), Q x

As usual, when we have an existential given, we use it right away.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
· -- (→)

assume h2 : ∃ (x : U), P x
obtain (u : U) (h3 : P u) from h2
::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
h2 : ∃ (x : U), P x
u : U
h3 : P u
⊢ ∃ (x : U), Q x

Now that we have an object of type U in the tactic state, we can use h1 by applying universal
instantiation.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

55

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
· -- (→)

assume h2 : ∃ (x : U), P x
obtain (u : U) (h3 : P u) from h2
have h4 : P u ↔ Q u := h1 u
::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
h2 : ∃ (x : U), P x
u : U
h3 : P u
h4 : P u ↔ Q u
⊢ ∃ (x : U), Q x

Looking at h3 and h4, we can now see that we will be able to complete the proof if we assign
the value u to x in the goal. So our next step is the tactic apply Exists.intro u.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
· -- (→)

assume h2 : ∃ (x : U), P x
obtain (u : U) (h3 : P u) from h2
have h4 : P u ↔ Q u := h1 u
apply Exists.intro u
::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
h2 : ∃ (x : U), P x
u : U
h3 : P u
h4 : P u ↔ Q u
⊢ Q u

To complete the proof, we use the left-to-right direction of h4. We have h4.ltr : P u → Q u
and h3 : P u, so by modus ponens, h4.ltr h3 proves the goal Q u. Once we enter this step,
Lean indicates that the left-to-right proof is complete, and we can position the cursor below
the right-to-left bullet to see the tactic state for the second half of the proof.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

56

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
· -- (→)

assume h2 : ∃ (x : U), P x
obtain (u : U) (h3 : P u) from h2
have h4 : P u ↔ Q u := h1 u
apply Exists.intro u
show Q u from h4.ltr h3
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mpr
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
⊢ (∃ (x : U), Q x) →
∃ (x : U), P x

The second half of the proof is similar to the first. We begin by assuming h2 : ∃ (x : U), Q
x, and then we use that assumption to obtain u : U and h3 : Q u.

Lean File

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
· -- (→)

assume h2 : ∃ (x : U), P x
obtain (u : U) (h3 : P u) from h2
have h4 : P u ↔ Q u := h1 u
apply Exists.intro u
show Q u from h4.ltr h3
done

· -- (←)
assume h2 : ∃ (x : U), Q x
obtain (u : U) (h3 : Q u) from h2
::::
done

done

Tactic State in Infoview

▼ case mpr
U : Type
P Q : Pred U
h1 : ∀ (x : U), P x ↔ Q x
h2 : ∃ (x : U), Q x
u : U
h3 : Q u
⊢ ∃ (x : U), P x

We can actually shorten the proof by packing a lot into a single step. See if you can figure out
the last line of the completed proof below; we’ll give an explanation after the proof.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

57

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

example (U : Type) (P Q : Pred U)
(h1 : ∀ (x : U), P x ↔ Q x) :
(∃ (x : U), P x) ↔ ∃ (x : U), Q x := by

apply Iff.intro
· -- (→)

assume h2 : ∃ (x : U), P x
obtain (u : U) (h3 : P u) from h2
have h4 : P u ↔ Q u := h1 u
apply Exists.intro u
show Q u from h4.ltr h3
done

· -- (←)
assume h2 : ∃ (x : U), Q x
obtain (u : U) (h3 : Q u) from h2
show ∃ (x : U), P x from Exists.intro u ((h1 u).rtl h3)
done

done

To understand the last step, start with the fact that h1 u is a proof of P u ↔ Q u. Therefore (h1
u).rtl is a proof of Q u → P u, so by modus ponens, (h1 u).rtl h3 is a proof of P u. It follows
that Exists.intro u ((h1 u).rtl h3) is a proof of ∃ (x : U), P x, which was the goal.

There is one more style of reasoning that is sometimes used in proofs of biconditional state-
ments. It is illustrated in Example 3.4.5 of HTPI. Here is that theorem, as it is presented in
HTPI (HTPI p. 137).

Theorem. Suppose 𝐴, 𝐵, and 𝐶 are sets. Then 𝐴 ∩ (𝐵 \ 𝐶) = (𝐴 ∩ 𝐵) \ 𝐶.

Proof. Let 𝑥 be arbitrary. Then

𝑥 ∈ 𝐴 ∩ (𝐵 \ 𝐶) iff 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 \ 𝐶
iff 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐶
iff 𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝑥 ∉ 𝐶
iff 𝑥 ∈ (𝐴 ∩ 𝐵) \ 𝐶.

Thus, ∀𝑥(𝑥 ∈ 𝐴 ∩ (𝐵 \ 𝐶) ↔ 𝑥 ∈ (𝐴 ∩ 𝐵) \ 𝐶), so 𝐴 ∩ (𝐵 \ 𝐶) = (𝐴 ∩ 𝐵) \ 𝐶.

This proof is based on a fundamental principle of set theory that says that if two sets have
exactly the same elements, then they are equal. This principle is called the axiom of exten-
sionality, and it is what justifies the inference, in the last sentence, from ∀𝑥(𝑥 ∈ 𝐴∩(𝐵 \𝐶) ↔
𝑥 ∈ (𝐴 ∩ 𝐵) \ 𝐶) to 𝐴 ∩ (𝐵 \ 𝐶) = (𝐴 ∩ 𝐵) \ 𝐶.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

58

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

The heart of the proof is a string of equivalences that, taken together, establish the bicondi-
tional statement 𝑥 ∈ 𝐴∩(𝐵 \𝐶) ↔ 𝑥 ∈ (𝐴∩𝐵)\𝐶. One can also use this technique to prove a
biconditional statement in Lean. This time we’ll simply present the complete proof first, and
then explain it afterwards.

theorem Example_3_4_5 (U : Type)
(A B C : Set U) : A ∩ (B \ C) = (A ∩ B) \ C := by

apply Set.ext
fix x : U
show x ∈ A ∩ (B \ C) ↔ x ∈ (A ∩ B) \ C from

calc x ∈ A ∩ (B \ C)
_ ↔ x ∈ A ∧ (x ∈ B ∧ x ∉ C) := Iff.refl _
_ ↔ (x ∈ A ∧ x ∈ B) ∧ x ∉ C := and_assoc.symm
_ ↔ x ∈ (A ∩ B) \ C := Iff.refl _

done

The name of the axiom of extensionality in Lean is Set.ext, and it is applied in the first step
of the Lean proof. As usual, the apply tactic works backwards from the goal. In other words,
after the first line of the proof, the goal is ∀ (x : U), x ∈ A ∩ (B \ C) ↔ x ∈ (A ∩ B) \ C,
because by Set.ext, the conclusion of the theorem would follow from this statement. The rest
of the proof then proves this goal by introducing an arbitrary x of type U and then proving the
biconditional by stringing together several equivalences, exactly as in the HTPI proof.

The proof of the biconditional is called a calculational proof, and it is introduced by the
keyword calc. The calculational proof consists of a string of biconditional statements, each
of which is provided with a proof. You can think of the underscore on the left side of each
biconditional as standing for the right side of the previous biconditional (or, in the case of the
first biconditional, the statement after calc).

The proofs of the individual biconditionals in the calculational proof require some explanation.
Lean has a large library of theorems that it knows, and you can use those theorems in your
proofs. In particular, Iff.refl and and_assoc are names of theorems in Lean’s library. You
can find out what any theorem says by using the Lean command #check. (Commands that
ask Lean for a response generally start with the character #.) If you type #check Iff.refl in
a Lean file, you will see Lean’s response in the Infoview pane: Iff.refl (a : Prop) : a ↔ a.
What this tells us is that Lean already knows the theorem

theorem Iff.refl (a : Prop) : a ↔ a

(This theorem says that “iff” has a property called reflexivity; we’ll discuss reflexivity in Chap-
ter 4.) When variables are declared in the statement of a theorem, it is understood that they
can stand for anything of the appropriate type (see Section 3.1 of HTPI). Thus, the theorem
Iff.refl can be thought of as establishing the truth of the statement ∀ (a : Prop), a ↔ a. In
fact, you can get Lean to report the meaning of the theorem in this form with the command

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

59

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

#check @Iff.refl. What this means is that, in any proof, Lean lets you treat Iff.refl as
a proof of the statement ∀ (a : Prop), a ↔ a. Thus, by universal instantiation, for any
proposition a, Lean will recognize Iff.refl a as a proof of a ↔ a. This is used to justify the
first biconditional in the calculational proof.

But wait! The first biconditional in the calculational proof is x ∈ A ∩ (B \ C) ↔ x ∈ A ∧ (x ∈ B
∧ x ∉ C), which does not have the form a ↔ a. How can it be justified by the theorem Iff.refl?
Recall that Lean doesn’t need to be told to write out definitions of mathematical notation; it
does that automatically. When the definitions of the set theory notation are written out, the
first biconditional in the calculational proof becomes x ∈ A ∧ (x ∈ B ∧ x ∉ C) ↔ x ∈ A ∧ (x
∈ B ∧ x ∉ C), which does have the form a ↔ a, so it can be proven with the term-mode proof
Iff.refl _. Note that we are using an underscore here to ask Lean to figure out what to plug
in for a. This saves us the trouble of writing out the full term-mode proof, which would be
Iff.refl (x ∈ A ∧ (x ∈ B ∧ x ∉ C)). The lesson of this example is that the theorem Iff.refl
is more powerful than it looks. Not only can we use Iff.refl _ to prove statements of the
form a ↔ a, we can also use it to prove statements of the form a ↔ a', if a and a' reduce to the
same thing when definitions are filled in. We say in this case that a and a' are definitionally
equal. This explains the third line of the calculational proof, which is also justified by the proof
Iff.refl _.

The second line uses the theorem and_assoc. If you type #check and_assoc, you will get this
response from Lean:

and_assoc {a b c : Prop} : (a ∧ b) ∧ c ↔ a ∧ b ∧ c

Once again, it is understood that the variables a, b, and c can stand for any propositions, as
you can see by giving the command #check @and_assoc. This generates the response

@and_assoc : ∀ {a b c : Prop}, (a ∧ b) ∧ c ↔ a ∧ b ∧ c

which is shorthand for

@and_assoc : ∀ {a : Prop}, ∀ {b : Prop}, ∀ {c : Prop},
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c)

Recall that the curly braces indicate that a, b, and c are implicit arguments, and that Lean
groups the logical connectives to the right, which means that it interprets a ∧ b ∧ c as a ∧
(b ∧ c). This is the associative law for “and” (see Section 1.2 of HTPI). Since a, b, and c are
implicit, Lean will recognize and_assoc as a proof of any statement of the form (a ∧ b) ∧ c
↔ a ∧ (b ∧ c), where a, b, and c can be replaced with any propositions. Lean doesn’t need
to be told what propositions are being used as a, b, and c; it will figure that out for itself.
Unfortunately, the second biconditional in the calculational proof is x ∈ A ∧ (x ∈ B ∧ x ∉ C) ↔
(x ∈ A ∧ x ∈ B) ∧ x ∉ C, which has the form a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c, not (a ∧ b) ∧ c ↔ a ∧
(b ∧ c). (Notice that the first of these biconditionals is the same as the second except that the
left and right sides have been swapped.) To account for this discrepancy, we use the fact that

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

60

https://doi.org/10.1017/9781108539890

3.4. Proofs Involving Conjunctions and Biconditionals

if h is a proof of any biconditional P ↔ Q, then h.symm is a proof of Q ↔ P. Thus and_assoc.symm
proves the second biconditional in the calculational proof. (By the way, the HTPI proof avoids
any mention of the associativity of “and” by simply leaving out parentheses in the conjunction
𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐶. As explained in Section 1.2 of HTPI, this represents an implicit use
of the associativity of “and.”)

You can get a better understanding of the first step of our last proof by typing #check @Set.ext.
The result is

@Set.ext : ∀ {α : Type u_1} {a b : Set α},
(∀ (x : α), x ∈ a ↔ x ∈ b) → a = b

which is shorthand for

@Set.ext : ∀ {α : Type u_1}, ∀ {a : Set α}, ∀ {b : Set α},
(∀ (x : α), x ∈ a ↔ x ∈ b) → a = b

Ignoring the u_1, whose significance won’t be important to us, this means that Set.ext can be
used to prove any statement of the form (∀ (x : α), x ∈ a ↔ x ∈ b) → a = b, where α can be
replaced by any type and a and b can be replaced by any sets of objects of type α. Make sure
you understand how this explains the effect of the tactic apply Set.ext in the first step of our
last proof. Almost all of our proofs that two sets are equal will start with apply Set.ext.

Notice that in Lean’s responses to both #check @and_assoc and #check @Set.ext, multiple
universal quantifiers in a row were grouped together and written as a single universal quantifier
followed by a list of variables (with types). Lean allows this notational shorthand for any
sequence of consecutive quantifiers, as long as they are all of the same kind (all existential or
all universal), and we will use this notation from now on.

Exercises

1. theorem Exercise_3_4_2 (U : Type) (A B C : Set U)
(h1 : A ⊆ B) (h2 : A ⊆ C) : A ⊆ B ∩ C := by

::::
done

2. theorem Exercise_3_4_4 (U : Type) (A B C : Set U)
(h1 : A ⊆ B) (h2 : A ⊈ C) : B ⊈ C := by

::::
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

61

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

3. theorem Exercise_3_3_16 (U : Type) (B : Set U)
(F : Set (Set U)) : F ⊆ P B → ⋃₀ F ⊆ B := by

::::
done

4. theorem Exercise_3_3_17 (U : Type) (F G : Set (Set U))
(h1 : ∀ (A : Set U), A ∈ F → ∀ (B : Set U), B ∈ G → A ⊆ B) :
⋃₀ F ⊆ ⋂₀ G := by

::::
done

5. theorem Exercise_3_4_7 (U : Type) (A B : Set U) :
P (A ∩ B) = P A ∩ P B := by

::::
done

6. theorem Exercise_3_4_17 (U : Type) (A : Set U) : A = ⋃₀ (P A) := by

::::
done

7. theorem Exercise_3_4_18a (U : Type) (F G : Set (Set U)) :
⋃₀ (F ∩ G) ⊆ (⋃₀ F) ∩ (⋃₀ G) := by

::::
done

8. theorem Exercise_3_4_19 (U : Type) (F G : Set (Set U)) :
(⋃₀ F) ∩ (⋃₀ G) ⊆ ⋃₀ (F ∩ G) ↔
∀ (A B : Set U), A ∈ F → B ∈ G → A ∩ B ⊆ ⋃₀ (F ∩ G) := by

::::
done

3.5. Proofs Involving Disjunctions

A common proof method for dealing with givens or goals that are disjunctions is proof by cases.
Here’s how it works (HTPI p. 143).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

62

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

To use a given of the form P ∨ Q:

Break your proof into cases. For case 1, assume that P is true and use this assumption to
prove the goal. For case 2, assume that Q is true and prove the goal.

In Lean, you can break a proof into cases by using the by_cases tactic. If you have a given
h : P ∨ Q, then the tactic by_cases on h will break your proof into two cases. For the first
case, the given h will be changed to h : P, and for the second, it will be changed to h : Q; the
goal for both cases will be the same as the original goal. Thus, the effect of the by_cases on
h tactic is as follows:

Tactic State Before Using Strategy

⋮
h : P ∨ Q
⊢ goal

Tactic State After Using Strategy

▼ case Case_1
⋮

h : P
⊢ goal
▼ case Case_2
⋮

h : Q
⊢ goal

Notice that the original given h : P ∨ Q gets replaced by h : P in case 1 and h : Q in case
2. This is usually what is most convenient, but if you write by_cases on h with h1, then the
original given h will be preserved, and new givens h1 : P and h1 : Q will be added to cases 1
and 2, respectively. If you want different names for the new givens in the two cases, then use
by_cases on h with h1, h2 to add the new given h1 : P in case 1 and h2 : Q in case 2.

You can follow by_cases on with any proof of a disjunction, even if that proof is not just a
single identifier. In that cases you will want to add with to specify the identifier or identifiers
to be used for the new assumptions in the two cases. Another variant is that you can use the
tactic by_cases h : P to break your proof into two cases, with the new assumptions being h :
P in case 1 and h : ¬P in case 2. In other words, the effect of by_cases h : P is the same as
adding the new given h : P ∨ ¬P (which, of course, is a tautology) and then using the tactic
by_cases on h.

There are several introduction rules that you can use in Lean to prove a goal of the form P ∨
Q. If you have h : P, then Lean will accept Or.intro_left Q h as a proof of P ∨ Q. In most
situations Lean can infer the proposition Q from context, and in that case you can use the
shorter form Or.inl h as a proof of P ∨ Q. You can see the difference between Or.intro_left
and Or.inl by using the #check command:

@Or.intro_left : ∀ {a : Prop} (b : Prop), a → a ∨ b

@Or.inl : ∀ {a b : Prop}, a → a ∨ b

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

63

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Notice that b is an implicit argument in Or.inl, but not in Or.intro_left.

Similarly, if you have h : Q, then Or.intro_right P h is a proof of P ∨ Q. In most situations
Lean can infer P from context, and you can use the shorter form Or.inr h.

Often, when your goal has the form P ∨ Q, you will be unable to prove P, and also unable to
prove Q. Proof by cases can help in that situation as well (HTPI p. 145).

To prove a goal of the form P ∨ Q:

Break your proof into cases. In each case, either prove P or prove Q.

Example 3.5.2 from HTPI illustrates these strategies:

Lean File

theorem Example_3_5_2
(U : Type) (A B C : Set U) :
A \ (B \ C) ⊆ (A \ B) ∪ C := by

::::
done

Tactic State in Infoview

U : Type
A B C : Set U
⊢ A \ (B \ C) ⊆ A \ B ∪ C

The define tactic would rewrite the goal as ∀ ⦃a : U⦄, a ∈ A \ (B \ C) → a ∈ A \ B ∪ C,
which suggests that our next two tactics should be fix x : U and assume h1 : x ∈ A \ (B \
C). But as we have seen before, if you know what the result of the define tactic is going to be,
then there is usually no need to use it. After introducing x as an arbitrary element of A \ (B
\ C), we write out the definitions of our new given and goal to help guide our next strategy
choice:

Lean File

theorem Example_3_5_2
(U : Type) (A B C : Set U) :
A \ (B \ C) ⊆ (A \ B) ∪ C := by

fix x : U
assume h1 : x ∈ A \ (B \ C)
define; define at h1
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
x : U
h1 : x ∈ A ∧ x ∉ B \ C
⊢ x ∈ A \ B ∨ x ∈ C

The goal is now a disjunction, which suggests that proof by cases might be helpful. But what
cases should we use? The key is to look at the meaning of the right half of the given h1. The
meaning of x ∉ B \ C is ¬(x ∈ B ∧ x ∉ C), which, by one of the De Morgan laws, is equivalent
to x ∉ B ∨ x ∈ C.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

64

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

theorem Example_3_5_2
(U : Type) (A B C : Set U) :
A \ (B \ C) ⊆ (A \ B) ∪ C := by

fix x : U
assume h1 : x ∈ A \ (B \ C)
define; define at h1
have h2 : x ∉ B \ C := h1.right
define at h2; demorgan at h2

--h2 : x ∉ B ∨ x ∈ C
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
x : U
h1 : x ∈ A ∧ x ∉ B \ C
h2 : x ∉ B ∨ x ∈ C
⊢ x ∈ A \ B ∨ x ∈ C

The new given h2 is now a disjunction, which suggests what cases we should use:

Lean File

theorem Example_3_5_2
(U : Type) (A B C : Set U) :
A \ (B \ C) ⊆ (A \ B) ∪ C := by

fix x : U
assume h1 : x ∈ A \ (B \ C)
define; define at h1
have h2 : x ∉ B \ C := h1.right
define at h2; demorgan at h2

--h2 : x ∉ B ∨ x ∈ C
by_cases on h2
::::
done

Tactic State in Infoview

▼ case Case_1
U : Type
A B C : Set U
x : U
h1 : x ∈ A ∧ x ∉ B \ C
h2 : x ∉ B
⊢ x ∈ A \ B ∨ x ∈ C
▼ case Case_2
U : Type
A B C : Set U
x : U
h1 : x ∈ A ∧ x ∉ B \ C
h2 : x ∈ C
⊢ x ∈ A \ B ∨ x ∈ C

Of course, now that we have two goals, we will introduce bullets labeling the two parts of the
proof as case 1 and case 2. Looking at the givens h1 and h2 in both cases, it is not hard to
see that we should be able to prove x ∈ A \ B in case 1 and x ∈ C in case 2. Thus, in case 1
we will be able to give a proof of the goal that has the form Or.inl _, where the blank will
be filled in with a proof of x ∈ A \ B, and in case 2 we can use Or.inr _, filling in the blank
with a proof of x ∈ C. This suggests that we should use the tactics apply Or.inl in case 1 and
apply Or.inr in case 2. Focusing first on case 1, we get:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

65

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

theorem Example_3_5_2
(U : Type) (A B C : Set U) :
A \ (B \ C) ⊆ (A \ B) ∪ C := by

fix x : U
assume h1 : x ∈ A \ (B \ C)
define; define at h1
have h2 : x ∉ B \ C := h1.right
define at h2; demorgan at h2

--h2 : x ∉ B ∨ x ∈ C
by_cases on h2
· -- Case 1. h2 : x ∉ B

apply Or.inl
::::
done

· -- Case 2. h2 : x ∈ C

::::
done

done

Tactic State in Infoview

▼ case Case_1.h
U : Type
A B C : Set U
x : U
h1 : x ∈ A ∧ x ∉ B \ C
h2 : x ∉ B
⊢ x ∈ A \ B

Notice that the tactic apply Or.inl has changed the goal for case 1 to the left half of the
original goal, x ∈ A \ B. Since this means x ∈ A ∧ x ∉ B, we can complete case 1 by combining
h1.left with h2, and then we can move on to case 2.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

66

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

theorem Example_3_5_2
(U : Type) (A B C : Set U) :
A \ (B \ C) ⊆ (A \ B) ∪ C := by

fix x : U
assume h1 : x ∈ A \ (B \ C)
define; define at h1
have h2 : x ∉ B \ C := h1.right
define at h2; demorgan at h2

--h2 : x ∉ B ∨ x ∈ C
by_cases on h2
· -- Case 1. h2 : x ∉ B

apply Or.inl
show x ∈ A \ B from And.intro h1.left h2
done

· -- Case 2. h2 : x ∈ C

::::
done

done

Tactic State in Infoview

▼ case Case_2
U : Type
A B C : Set U
x : U
h1 : x ∈ A ∧ x ∉ B \ C
h2 : x ∈ C
⊢ x ∈ A \ B ∨ x ∈ C

Case 2 is similar, using Or.inr and h2

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

67

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

theorem Example_3_5_2
(U : Type) (A B C : Set U) :
A \ (B \ C) ⊆ (A \ B) ∪ C := by

fix x : U
assume h1 : x ∈ A \ (B \ C)
define; define at h1
have h2 : x ∉ B \ C := h1.right
define at h2; demorgan at h2

--h2 : x ∉ B ∨ x ∈ C
by_cases on h2
· -- Case 1. h2 : x ∉ B

apply Or.inl
show x ∈ A \ B from And.intro h1.left h2
done

· -- Case 2. h2 : x ∈ C
apply Or.inr
show x ∈ C from h2
done

done

Tactic State in Infoview

No goals

There is a second strategy that is often useful to prove a goal of the form P ∨ Q. It is motivated
by the fact that P ∨ Q is equivalent to both ¬P → Q and ¬Q → P (HTPI p. 147).

To prove a goal of the form P ∨ Q:

Assume that P is false and prove Q, or assume that Q is false and prove P.

If your goal is P ∨ Q, then the Lean tactic or_left with h will add the new given h : ¬Q to the
tactic state and set the goal to be P, and or_right with h will add h : ¬P to the tactic state
and set the goal to be Q. For example, here is the effect of the tactic or_left with h:

Tactic State Before Using Strategy

⋮
⊢ P ∨ Q

Tactic State After Using Strategy

⋮
h : ¬Q
⊢ P

Notice that or_left and or_right have the same effect as apply Or.inl and apply Or.inr,
except that each adds a new given to the tactic state. Sometimes you can tell in advance that
you won’t need the extra given, and in that case the tactics apply Or.inl and apply Or.inr
can be useful. For example, that was the case in the example above. But if you think the

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

68

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

extra given might be useful, you are better off using or_left or or_right. Here’s an example
illustrating this.

Lean File

example (U : Type) (A B C : Set U)
(h1 : A \ B ⊆ C) : A ⊆ B ∪ C := by

::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A \ B ⊆ C
⊢ A ⊆ B ∪ C

Of course, we begin by letting x be an arbitrary element of A. Writing out the meaning of the
new goal shows that it is a disjunction.

Lean File

example (U : Type) (A B C : Set U)
(h1 : A \ B ⊆ C) : A ⊆ B ∪ C := by

fix x : U
assume h2 : x ∈ A
define
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A \ B ⊆ C
x : U
h2 : x ∈ A
⊢ x ∈ B ∨ x ∈ C

Looking at the givens h1 and h2, we see that if we assume x ∉ B, then we should be able to
prove x ∈ C. This suggests that we should use the or_right tactic.

Lean File

example (U : Type) (A B C : Set U)
(h1 : A \ B ⊆ C) : A ⊆ B ∪ C := by

fix x : U
assume h2 : x ∈ A
define
or_right with h3
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A \ B ⊆ C
x : U
h2 : x ∈ A
h3 : x ∉ B
⊢ x ∈ C

We can now complete the proof. Notice that h1 _ will be a proof of the goal x ∈ C, if we can
fill in the blank with a proof of x ∈ A \ B. Since x ∈ A \ B means x ∈ A ∧ x ∉ B, we can prove
it with the expression And.intro h2 h3.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

69

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

example (U : Type) (A B C : Set U)
(h1 : A \ B ⊆ C) : A ⊆ B ∪ C := by

fix x : U
assume h2 : x ∈ A
define
or_right with h3
show x ∈ C from h1 (And.intro h2 h3)
done

Tactic State in Infoview

No goals

The fact that P ∨ Q is equivalent to both ¬P → Q and ¬Q → P also suggests another strategy for
using a given that is a disjunction (HTPI p. 149).

To use a given of the form P ∨ Q:

If you are also given ¬P, or you can prove that P is false, then you can use this given to
conclude that Q is true. Similarly, if you are given ¬Q or can prove that Q is false, then you
can conclude that P is true.

This strategy is a rule of inference called disjunctive syllogism, and the tactic for using this
strategy in Lean is called disj_syll. If you have h1 : P ∨ Q and h2 : ¬P, then the tactic
disj_syll h1 h2 will change h1 to h1 : Q; if instead you have h2 : ¬Q, then disj_syll h1 h2 will
change h1 to h1 : P. Notice that, as with the by_cases tactic, the given h1 gets replaced with
the conclusion of the rule. The tactic disj_syll h1 h2 with h3 will preserve the original h1
and introduce the conclusion as a new given with the identifier h3. Also, as with the by_cases
tactic, either h1 or h2 can be a complex proof rather than simply an identifier (although in that
case it must be enclosed in parentheses, so that Lean can tell where h1 ends and h2 begins).
The only requirement is that h1 must be a proof of a disjunction, and h2 must be a proof of
the negation of one side of the disjunction. If h1 is not simply an identifier, then you will want
to use with to specify the identifier to be used for the conclusion of the rule.

Here’s an example illustrating the use of the disjunctive syllogism rule.

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ¬∃ (x : U),
x ∈ A ∩ B

⊢ A ⊆ C

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

70

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Of course, we begin by introducing an arbitrary element of A. We also rewrite h2 as an equivalent
positive statement.

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
quant_neg at h2
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ∀ (x : U),
x ∉ A ∩ B

a : U
h3 : a ∈ A
⊢ a ∈ C

We can now make two inferences by combining h1 with h3 and by applying h2 to a. To see
how to use the inferred statements, we write out their definitions, and since one of them is a
negative statement, we reexpress it as an equivalent positive statement.

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
quant_neg at h2
have h4 : a ∈ B ∪ C := h1 h3
have h5 : a ∉ A ∩ B := h2 a
define at h4
define at h5; demorgan at h5
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ∀ (x : U),
x ∉ A ∩ B

a : U
h3 : a ∈ A
h4 : a ∈ B ∨ a ∈ C
h5 : a ∉ A ∨ a ∉ B
⊢ a ∈ C

Both h4 and h5 are disjunctions, and looking at h3 we see that the disjunctive syllogism rule
can be applied. From h3 and h5 we can draw the conclusion a ∉ B, and then combining that
conclusion with h4 we can infer a ∈ C. Since that is the goal, we are done.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

71

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
quant_neg at h2
have h4 : a ∈ B ∪ C := h1 h3
have h5 : a ∉ A ∩ B := h2 a
define at h4
define at h5; demorgan at h5
disj_syll h5 h3 --h5 : a ∉ B
disj_syll h4 h5 --h4 : a ∈ C
show a ∈ C from h4
done

Tactic State in Infoview

No goals

We’re going to redo the last example, to illustrate another useful technique in Lean. We start
with some of the same steps as before.

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
have h4 : a ∈ B ∪ C := h1 h3
define at h4
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ¬∃ (x : U),
x ∈ A ∩ B

a : U
h3 : a ∈ A
h4 : a ∈ B ∨ a ∈ C
⊢ a ∈ C

At this point, you might see a possible route to the goal: from h2 and h3 we should be able
to prove that a ∉ B, and then, combining that with h4 by the disjunctive syllogism rule, we
should be able to deduce the goal a ∈ C. Let’s try writing the proof that way.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

72

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

:::::::
example

(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
have h4 : a ∈ B ∪ C := h1 h3
define at h4
have h5 : a ∉ B := sorry
disj_syll h4 h5 --h4 : a ∈ C
show a ∈ C from h4
done

Tactic State in Infoview

No goals

We have introduced a new idea in this proof. The justification we have given for introducing
h5 : a ∉ B is sorry. You might think of this as meaning “Sorry, I’m not going to give a
justification for this statement, but please accept it anyway.” Of course, this is cheating; in a
complete proof, every step must be justified. Lean accepts sorry as a proof of any statement,
but it displays it in red to warn you that you’re cheating. It also puts a brown squiggle under
the keyword example and it puts the message declaration uses 'sorry' in the Infoview, to
warn you that, although the proof has reached the goal, it is not fully justified.

Although writing the proof this way is cheating, it is a convenient way to see that our plan of
attack for this proof is reasonable. Lean has accepted the proof, except for the warning that
we have used sorry. So now we know that if we go back and replace sorry with a proof of a
∉ B, then we will have a complete proof.

The proof of a ∉ B is hard enough that it is easier to do it in tactic mode rather than term
mode. So we will begin the proof as we always do for tactic-mode proofs: we replace sorry
with by, leave a blank line, and then put done, indented further than the surrounding text.
When we put the cursor on the blank line before done, we see the tactic state for our “proof
within a proof.”

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

73

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
have h4 : a ∈ B ∪ C := h1 h3
define at h4
have h5 : a ∉ B := by

::::
done

disj_syll h4 h5 --h4 : a ∈ C
show a ∈ C from h4
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ¬∃ (x : U),
x ∈ A ∩ B

a : U
h3 : a ∈ A
h4 : a ∈ B ∨ a ∈ C
⊢ a ∉ B

Note that h5 : a ∉ B is not a given in the tactic state, because we have not yet justified it; in
fact, a ∉ B is the goal. This goal is a negative statement, and h2 is also negative. This suggests
that we could try using proof by contradiction, achieving the contradiction by contradicting
h2. So we use the tactic contradict h2 with h6.

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
have h4 : a ∈ B ∪ C := h1 h3
define at h4
have h5 : a ∉ B := by

contradict h2 with h6
::::
done

disj_syll h4 h5 --h4 : a ∈ C
show a ∈ C from h4
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : A ⊆ B ∪ C
h2 : ¬∃ (x : U),
x ∈ A ∩ B

a : U
h3 : a ∈ A
h4 : a ∈ B ∨ a ∈ C
h6 : a ∈ B
⊢ ∃ (x : U), x ∈ A ∩ B

Looking at h3 and h6, we see that the right value to plug in for x in the goal is a. In fact,
Exists.intro a _ will prove the goal, if we can fill in the blank with a proof of a ∈ A ∩ B. Since
this means a ∈ A ∧ a ∈ B, we can prove it with And.intro h3 h6. Thus, we can complete the
proof in one more step:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

74

https://doi.org/10.1017/9781108539890

3.5. Proofs Involving Disjunctions

Lean File

example
(U : Type) (A B C : Set U) (h1 : A ⊆ B ∪ C)
(h2 : ¬∃ (x : U), x ∈ A ∩ B) : A ⊆ C := by

fix a : U
assume h3 : a ∈ A
have h4 : a ∈ B ∪ C := h1 h3
define at h4
have h5 : a ∉ B := by

contradict h2 with h6
show ∃ (x : U), x ∈ A ∩ B from

Exists.intro a (And.intro h3 h6)
done

disj_syll h4 h5 --h4 : a ∈ C
show a ∈ C from h4
done

Tactic State in Infoview

No goals

The red squiggle has disappeared from the word done, indicating that the proof is complete.

It was not really necessary for us to use sorry when writing this proof. We could have simply
written the steps in order, exactly as they appear above. Any time you use the have tactic
with a conclusion that is difficult to justify, you have a choice. You can establish the have
with sorry, complete the proof, and then return and fill in a justification for the have, as we
did in the example above. Or, you can justify the have right away by typing by after := and
then plunging into the “proof within in a proof.” Once you complete the inner proof, you can
continue with the original proof.

And in case you were wondering: yes, if the inner proof uses the have tactic with a statement
that is hard to justify, then you can write a “proof within a proof within a proof”!

Exercises

In each case, replace sorry with a proof.

1. theorem Exercise_3_5_2 (U : Type) (A B C : Set U) :
(A ∪ B) \ C ⊆ A ∪ (B \ C) := sorry

2. theorem Exercise_3_5_5 (U : Type) (A B C : Set U)
(h1 : A ∩ C ⊆ B ∩ C) (h2 : A ∪ C ⊆ B ∪ C) : A ⊆ B := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

75

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

3. theorem Exercise_3_5_7 (U : Type) (A B C : Set U) :
A ∪ C ⊆ B ∪ C ↔ A \ C ⊆ B \ C := sorry

4. theorem Exercise_3_5_8 (U : Type) (A B : Set U) :
P A ∪ P B ⊆ P (A ∪ B) := sorry

5. theorem Exercise_3_5_17b (U : Type) (F : Set (Set U)) (B : Set U) :
B ∪ (⋂₀ F) = {x : U | ∀ (A : Set U), A ∈ F → x ∈ B ∪ A} := sorry

6. theorem Exercise_3_5_18 (U : Type) (F G H : Set (Set U))
(h1 : ∀ (A : Set U), A ∈ F → ∀ (B : Set U), B ∈ G → A ∪ B ∈ H) :
⋂₀ H ⊆ (⋂₀ F) ∪ (⋂₀ G) := sorry

7. theorem Exercise_3_5_24a (U : Type) (A B C : Set U) :
(A ∪ B) ∆ C ⊆ (A ∆ C) ∪ (B ∆ C) := sorry

3.6. Existence and Uniqueness Proofs

Recall that ∃! (x : U), P x means that there is exactly one x of type U such that P x is true.
One way to deal with a given or goal of this form is to use the define tactic to rewrite it as
the equivalent statement ∃ (x : U), P x ∧ ∀ (x_1 : U), P x_1 → x_1 = x. You can then apply
techniques discussed previously in this chapter. However, there are also proof techniques, and
corresponding Lean tactics, for working directly with givens and goals of this form.

Often a goal of the form ∃! (x : U), P x is proven by using the following strategy. This is a
slight rephrasing of the strategy presented in HTPI. The rephrasing is based on the fact that
for any propositions A, B, and C, A ∧ B → C is equivalent to A → B → C (you can check this
equivalence by making a truth table). The second of these statements is usually easier to work
with in Lean than the first one, so we will often rephrase statements that have the form A ∧
B → C as A → B → C. To see why the second statement is easier to use, suppose that you have
givens hA : A and hB : B. If you also have h : A → B → C, then h hA is a proof of B → C, and
therefore h hA hB is a proof of C. If instead you had h' : (A ∧ B) → C, then to prove C you
would have to write h' (And.intro hA hB), which is a bit less convenient.

With that preparation, here is our strategy for proving statements of the form ∃! (x : U), P
x (HTPI pp. 156–157).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

76

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

To prove a goal of the form ∃! (x : U), P x:

Prove ∃ (x : U), P x and ∀ (x_1 x_2 : U), P x_1 → P x_2 → x_1 = x_2. The first of these
goals says that there exists an x such that P x is true, and the second says that it is unique.
The two parts of the proof are therefore sometimes labeled existence and uniqueness.

To apply this strategy in a Lean proof, we use the tactic exists_unique. We’ll illustrate this
with the theorem from Example 3.6.2 in HTPI. Here’s how that theorem and its proof are
presented in HTPI (HTPI pp. 157–158):

Theorem. There is a unique set 𝐴 such that for every set 𝐵, 𝐴 ∪ 𝐵 = 𝐵.

Proof. Existence: Clearly ∀𝐵(∅ ∪ 𝐵 = 𝐵), so ∅ has the required property.

Uniqueness: Suppose ∀𝐵(𝐶 ∪ 𝐵 = 𝐵) and ∀𝐵(𝐷 ∪ 𝐵 = 𝐵). Applying the first of these
assumptions to 𝐷 we see that 𝐶 ∪ 𝐷 = 𝐷, and applying the second to 𝐶 we get 𝐷 ∪ 𝐶 = 𝐶.
But clearly 𝐶 ∪ 𝐷 = 𝐷 ∪ 𝐶, so 𝐶 = 𝐷.

You will notice that there are two statements in this proof that are described as “clearly” true.
This brings up one of the difficulties with proving theorems in Lean: things that are clear to
us are not necessarily clear to Lean! There are two ways to deal with such “clear” statements.
The first is to see if the statement is in the library of theorems that Lean knows. The second
is to prove the statement as a preliminary theorem that can then be used in the proof of our
main theorem. We’ll take the second approach here, since proving these “clear” facts will
give us more practice with Lean proofs, but later we’ll have more to say about searching for
statements in Lean’s theorem library.

The first theorem we need says that for every set B, ∅ ∪ B = B, and it brings up a subtle issue:
in Lean, the symbol ∅ is ambiguous! The reason for this is Lean’s strict typing rules. For
each type U, there is an empty set of type Set U. There is, for example, the set of type Set
Nat that contains no natural numbers, and also the set of type Set Real that contains no real
numbers. To Lean, these are different sets, because they have different types. Which one does
the symbol ∅ denote? The answer will be different in different contexts. Lean can often figure
out from context which empty set you have in mind, but if it can’t, then you have to tell it
explicitly by writing (∅ : Set U) rather than ∅. Fortunately, in our theorems Lean is able to
figure out which empty set we have in mind.

With that preparation, we are ready to prove our first preliminary theorem. Since the goal is
an equation between sets, our first step is to use the tactic apply Set.ext.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

77

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
::::
done

Tactic State in Infoview

▼ case h
U : Type
B : Set U
⊢ ∀ (x : U),
x ∈ ∅ ∪ B ↔ x ∈ B

Based on the form of the goal, our next two tactics should be fix x : U and apply Iff.intro.
This leaves us with two goals, corresponding to the two directions of the biconditional, but
we’ll focus first on just the left-to-right direction.

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
fix x : U
apply Iff.intro
· -- (→)

::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case h.mp
U : Type
B : Set U
x : U
⊢ x ∈ ∅ ∪ B → x ∈ B

Of course, our next step is to assume x ∈ ∅ ∪ B. To help us see how to move forward, we also
write out the definition of this assumption.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

78

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
fix x : U
apply Iff.intro
· -- (→)

assume h1 : x ∈ ∅ ∪ B
define at h1
::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case h.mp
U : Type
B : Set U
x : U
h1 : x ∈ ∅ ∨ x ∈ B
⊢ x ∈ B

Now you should see a way to complete the proof: the statement x ∈ ∅ is false, so we should
be able to apply the disjunctive syllogism rule to h1 to infer the goal x ∈ B. To carry out this
plan, we’ll first have to prove x ∉ ∅. We’ll use the have tactic, and since there’s no obvious
term-mode proof to justify it, we’ll try a tactic-mode proof.

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
fix x : U
apply Iff.intro
· -- (→)

assume h1 : x ∈ ∅ ∪ B
define at h1
have h2 : x ∉ ∅ := by

::::
done

::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

U : Type
B : Set U
x : U
h1 : x ∈ ∅ ∨ x ∈ B
⊢ x ∉ ∅

The goal for our “proof within a proof” is a negative statement, so proof by contradiction
seems like a good start.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

79

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
fix x : U
apply Iff.intro
· -- (→)

assume h1 : x ∈ ∅ ∪ B
define at h1
have h2 : x ∉ ∅ := by

by_contra h3
::::
done

::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

U : Type
B : Set U
x : U
h1 : x ∈ ∅ ∨ x ∈ B
h3 : x ∈ ∅
⊢ False

To see how to use the new assumption h3, we use the tactic define at h3. The definition Lean
gives for the statement x ∈ ∅ is False. In other words, Lean knows that, by the definition of
∅, the statement x ∈ ∅ is false. Since False is our goal, this completes the inner proof, and we
can return to the main proof.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

80

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
fix x : U
apply Iff.intro
· -- (→)

assume h1 : x ∈ ∅ ∪ B
define at h1
have h2 : x ∉ ∅ := by

by_contra h3
define at h3 --h3 : False
show False from h3
done

::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case h.mp
U : Type
B : Set U
x : U
h1 : x ∈ ∅ ∨ x ∈ B
h2 : x ∉ ∅
⊢ x ∈ B

Now that we have established the claim h2 : x ∉ ∅, we can apply the disjunctive syllogism rule
to h1 and h2 to reach the goal. This completes the left-to-right direction of the biconditional
proof, so we move on to the right-to-left direction.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

81

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
fix x : U
apply Iff.intro
· -- (→)

assume h1 : x ∈ ∅ ∪ B
define at h1
have h2 : x ∉ ∅ := by

by_contra h3
define at h3 --h3 : False
show False from h3
done

disj_syll h1 h2 --h1 : x ∈ B
show x ∈ B from h1
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case h.mpr
U : Type
B : Set U
x : U
⊢ x ∈ B → x ∈ ∅ ∪ B

This direction of the biconditional proof is easier: once we introduce the assumption h1 : x ∈
B, our goal will be x ∈ ∅ ∪ B, which means x ∈ ∅ ∨ x ∈ B, and we can prove it with the proof
Or.inr h1.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

82

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem empty_union {U : Type} (B : Set U) :
∅ ∪ B = B := by

apply Set.ext
fix x : U
apply Iff.intro
· -- (→)

assume h1 : x ∈ ∅ ∪ B
define at h1
have h2 : x ∉ ∅ := by

by_contra h3
define at h3 --h3 : False
show False from h3
done

disj_syll h1 h2 --h1 : x ∈ B
show x ∈ B from h1
done

· -- (←)
assume h1 : x ∈ B
show x ∈ ∅ ∪ B from Or.inr h1
done

done

Tactic State in Infoview

No goals

The second fact that was called “clear” in the proof from Example 3.6.2 was the equation C ∪
D = D ∪ C. This looks like an instance of the commutativity of the union operator. Let’s prove
that union is commutative.

Lean File

theorem union_comm {U : Type} (X Y : Set U) :
X ∪ Y = Y ∪ X := by

::::
done

Tactic State in Infoview

U : Type
X Y : Set U
⊢ X ∪ Y = Y ∪ X

Once again, we begin with apply Set.ext, which converts the goal to ∀ (x : U), x ∈ X ∪ Y ↔
x ∈ Y ∪ X, and then fix x : U.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

83

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem union_comm {U : Type} (X Y : Set U) :
X ∪ Y = Y ∪ X := by

apply Set.ext
fix x : U
::::
done

Tactic State in Infoview

▼ case h
U : Type
X Y : Set U
x : U
⊢ x ∈ X ∪ Y ↔ x ∈ Y ∪ X

To understand the goal better, we’ll write out the definitions of the two sides of the bicondi-
tional. We use an extension of the define tactic that allows us to write out the definition of
just a part of a given or the goal. The tactic define : x ∈ X ∪ Y will replace x ∈ X ∪ Y with
its definition wherever it appears in the goal, and then define : x ∈ Y ∪ X will replace x ∈ Y
∪ X with its definition. (Note that define : X ∪ Y produces a result that is not as useful. It is
usually best to define a complete statement rather than just a part of a statement. As usual,
you can add at to do the replacements in a given rather than the goal.)

Lean File

theorem union_comm {U : Type} (X Y : Set U) :
X ∪ Y = Y ∪ X := by

apply Set.ext
fix x : U
define : x ∈ X ∪ Y
define : x ∈ Y ∪ X
::::
done

Tactic State in Infoview

▼ case h
U : Type
X Y : Set U
x : U
⊢ x ∈ X ∨ x ∈ Y ↔
x ∈ Y ∨ x ∈ X

By the way, there are similar extensions of all of the tactics contrapos, demorgan, conditional,
double_neg, bicond_neg, and quant_neg that allow you to use a logical equivalence to rewrite
just a part of a formula. For example, if your goal is P ∧ (¬Q → R), then the tactic contrapos
: ¬Q → R will change the goal to P ∧ (¬R → Q). If you have a given h : P → ¬∀ (x : U), Q x,
then the tactic quant_neg : ¬∀ (x : U), Q x at h will change h to h : P → ∃ (x : U), ¬Q x.

Returning to our proof of union_comm: the goal is now x ∈ X ∨ x ∈ Y ↔ x ∈ Y ∨ x ∈ X. You could
prove this by a somewhat tedious application of the rules for biconditionals and disjunctions
that were discussed in the last two sections, and we invite you to try it. But there is another
possibility. The goal now has the form P ∨ Q ↔ Q ∨ P, which is the commutative law for “or”
(see Section 1.2 of HTPI). We saw in a previous example that Lean has, in its library, the
associative law for “and”; it is called and_assoc. Does Lean also know the commutative law
for “or”?

Try typing #check @or_ in VS Code. After a few seconds, a pop-up window appears with
possible completions of this command. You will see or_assoc on the list, as well as or_comm.
Select or_comm, and you’ll get this response: @or_comm : ∀ {a b : Prop}, a ∨ b ↔ b ∨ a. Since
a and b are implicit arguments in this theorem, you can use or_comm to prove any statement

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

84

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

of the form a ∨ b ↔ b ∨ a, where Lean will figure out for itself what a and b stand for. In
particular, or_comm will prove our current goal.

Lean File

theorem union_comm {U : Type} (X Y : Set U) :
X ∪ Y = Y ∪ X := by

apply Set.ext
fix x : U
define : x ∈ X ∪ Y
define : x ∈ Y ∪ X
show x ∈ X ∨ x ∈ Y ↔ x ∈ Y ∨ x ∈ X from or_comm
done

Tactic State in Infoview

No goals

We have now proven the two statements that were said to be “clearly” true in the proof in
Example 3.6.2 of HTPI, and we have given them names. And that means that we can now
use these theorems, in the file containing these proofs, to prove other theorems. As with any
theorem in Lean’s library, you can use the #check command to confirm what these theorems
say. If you type #check @empty_union and #check @union_comm, you will get these results:

@empty_union : ∀ {U : Type} (B : Set U), ∅ ∪ B = B

@union_comm : ∀ {U : Type} (X Y : Set U), X ∪ Y = Y ∪ X

Notice that in both theorems we used curly braces when we introduced the type U, so it is an
implicit argument and will not need to be specified when we apply the theorems. (Why did
we decide to make U an implicit argument? Well, when we apply the theorem empty_union we
will be specifying the set B, and when we apply union_comm we will be specifying the sets X and
Y. Lean can figure out what U is by examining the types of these sets, so there is no need to
specify it separately.)

We are finally ready to prove the theorem from Example 3.6.2. Here is the theorem:

Lean File

theorem Example_3_6_2 (U : Type) :
∃! (A : Set U), ∀ (B : Set U),
A ∪ B = B := by

::::
done

Tactic State in Infoview

U : Type
⊢ ∃! (A : Set U),
∀ (B : Set U),

A ∪ B = B

The goal starts with ∃!, so we use our new tactic, exists_unique.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

85

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem Example_3_6_2 (U : Type) :
∃! (A : Set U), ∀ (B : Set U),
A ∪ B = B := by

exists_unique
::::
done

Tactic State in Infoview

▼ case Existence
U : Type
⊢ ∃ (A : Set U),
∀ (B : Set U),

A ∪ B = B
▼ case Uniqueness
U : Type
⊢ ∀ (A_1 A_2 : Set U),
(∀ (B : Set U),

A_1 ∪ B = B) →
(∀ (B : Set U),

A_2 ∪ B = B) →
A_1 = A_2

We have two goals, labeled Existence and Uniqueness. Imitating the proof from HTPI, we
prove existence by using the value ∅ for A.

Lean File

theorem Example_3_6_2 (U : Type) :
∃! (A : Set U), ∀ (B : Set U),
A ∪ B = B := by

exists_unique
· -- Existence

apply Exists.intro ∅
::::
done

· -- Uniqueness

::::
done

done

Tactic State in Infoview

▼ case Existence
U : Type
⊢ ∀ (B : Set U),
∅ ∪ B = B

The goal is now precisely the statement of the theorem empty_union, so we can prove it by
simply citing that theorem.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

86

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem Example_3_6_2 (U : Type) :
∃! (A : Set U), ∀ (B : Set U),
A ∪ B = B := by

exists_unique
· -- Existence

apply Exists.intro ∅
show ∀ (B : Set U), ∅ ∪ B = B from empty_union
done

· -- Uniqueness

::::
done

done

Tactic State in Infoview

▼ case Uniqueness
U : Type
⊢ ∀ (A_1 A_2 : Set U),
(∀ (B : Set U),

A_1 ∪ B = B) →
(∀ (B : Set U),

A_2 ∪ B = B) →
A_1 = A_2

For the uniqueness proof, we begin by introducing arbitrary sets C and D and assuming ∀ (B :
Set U), C ∪ B = B and ∀ (B : Set U), D ∪ B = B, exactly as in the HTPI proof.

Lean File

theorem Example_3_6_2 (U : Type) :
∃! (A : Set U), ∀ (B : Set U),
A ∪ B = B := by

exists_unique
· -- Existence

apply Exists.intro ∅
show ∀ (B : Set U), ∅ ∪ B = B from empty_union
done

· -- Uniqueness
fix C : Set U; fix D : Set U
assume h1 : ∀ (B : Set U), C ∪ B = B
assume h2 : ∀ (B : Set U), D ∪ B = B
::::
done

done

Tactic State in Infoview

▼ case Uniqueness
U : Type
C D : Set U
h1 : ∀ (B : Set U),
C ∪ B = B

h2 : ∀ (B : Set U),
D ∪ B = B

⊢ C = D

The next step in HTPI was to apply h1 to D, and h2 to C. We do the same thing in Lean.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

87

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem Example_3_6_2 (U : Type) :
∃! (A : Set U), ∀ (B : Set U),
A ∪ B = B := by

exists_unique
· -- Existence

apply Exists.intro ∅
show ∀ (B : Set U), ∅ ∪ B = B from empty_union
done

· -- Uniqueness
fix C : Set U; fix D : Set U
assume h1 : ∀ (B : Set U), C ∪ B = B
assume h2 : ∀ (B : Set U), D ∪ B = B
have h3 : C ∪ D = D := h1 D
have h4 : D ∪ C = C := h2 C
::::
done

done

Tactic State in Infoview

▼ case Uniqueness
U : Type
C D : Set U
h1 : ∀ (B : Set U),
C ∪ B = B

h2 : ∀ (B : Set U),
D ∪ B = B

h3 : C ∪ D = D
h4 : D ∪ C = C
⊢ C = D

The goal can now be achieved by stringing together a sequence of equations: C = D ∪ C = C ∪
D = D. The first of these equations is h4.symm—that is, h4 read backwards; the second follows
from the commutative law for union; and the third is h3. We saw in Section 3.4 that you can
prove a biconditional statement in Lean by stringing together a sequence of biconditionals in
a calculational proof. Exactly the same method applies to equations. Here is the complete
proof of the theorem:

theorem Example_3_6_2 (U : Type) :
∃! (A : Set U), ∀ (B : Set U),
A ∪ B = B := by

exists_unique
· -- Existence

apply Exists.intro ∅
show ∀ (B : Set U), ∅ ∪ B = B from empty_union
done

· -- Uniqueness
fix C : Set U; fix D : Set U
assume h1 : ∀ (B : Set U), C ∪ B = B
assume h2 : ∀ (B : Set U), D ∪ B = B
have h3 : C ∪ D = D := h1 D
have h4 : D ∪ C = C := h2 C
show C = D from

calc C

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

88

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

_ = D ∪ C := h4.symm
_ = C ∪ D := union_comm D C
_ = D := h3

done
done

Since the statement ∃! (x : U), P x asserts both the existence and the uniqueness of an object
satisfying the predicate P, we have the following strategy for using a given of this form (HTPI
p. 159):

To use a given of the form ∃! (x : U), P x:

Introduce a new variable, say a, into the proof to stand for an object of type U for which P
a is true. You may also assert that ∀ (x_1 x_2 : U), P x_1 → P x_2 → x_1 = x2.

If you have a given h : ∃! (x : U), P x, then the tactic obtain (a : U) (h1 : P a) (h2 : ∀
(x_1 x_2 : U), P x_1 → P x_2 → x_1 = x_2) from h will introduce into the tactic state a new
variable a of type U and new givens (h1 : P a) and (h2 : ∀ (x_1 x_2 : U), P x_1 → P x_2
→ x_1 = x_2). To illustrate the use of this tactic, let’s prove the theorem in Example 3.6.4 of
HTPI.

Lean File

theorem Example_3_6_4 (U : Type) (A B C : Set U)
(h1 : ∃ (x : U), x ∈ A ∩ B)
(h2 : ∃ (x : U), x ∈ A ∩ C)
(h3 : ∃! (x : U), x ∈ A) :
∃ (x : U), x ∈ B ∩ C := by

::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : ∃ (x : U),
x ∈ A ∩ B

h2 : ∃ (x : U),
x ∈ A ∩ C

h3 : ∃! (x : U), x ∈ A
⊢ ∃ (x : U), x ∈ B ∩ C

We begin by applying the obtain tactic to h1, h2, and h3. In the case of h3, we get an extra
given asserting the uniqueness of the element of A. We also write out the definitions of two of
the new givens we obtain.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

89

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

Lean File

theorem Example_3_6_4 (U : Type) (A B C : Set U)
(h1 : ∃ (x : U), x ∈ A ∩ B)
(h2 : ∃ (x : U), x ∈ A ∩ C)
(h3 : ∃! (x : U), x ∈ A) :
∃ (x : U), x ∈ B ∩ C := by

obtain (b : U) (h4 : b ∈ A ∩ B) from h1
obtain (c : U) (h5 : c ∈ A ∩ C) from h2
obtain (a : U) (h6 : a ∈ A) (h7 : ∀ (y z : U),

y ∈ A → z ∈ A → y = z) from h3
define at h4; define at h5
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : ∃ (x : U),
x ∈ A ∩ B

h2 : ∃ (x : U),
x ∈ A ∩ C

h3 : ∃! (x : U), x ∈ A
b : U
h4 : b ∈ A ∧ b ∈ B
c : U
h5 : c ∈ A ∧ c ∈ C
a : U
h6 : a ∈ A
h7 : ∀ (y z : U),
y ∈ A → z ∈ A → y = z

⊢ ∃ (x : U), x ∈ B ∩ C

The key to the rest of the proof is the observation that, by the uniqueness of the element of
A, b must be equal to c. To justify this conclusion, note that by two applications of universal
instantiation, h7 b c is a proof of b ∈ A → c ∈ A → b = c, and therefore by two applications of
modus ponens, h7 b c h4.left h5.left is a proof of b = c.

Lean File

theorem Example_3_6_4 (U : Type) (A B C : Set U)
(h1 : ∃ (x : U), x ∈ A ∩ B)
(h2 : ∃ (x : U), x ∈ A ∩ C)
(h3 : ∃! (x : U), x ∈ A) :
∃ (x : U), x ∈ B ∩ C := by

obtain (b : U) (h4 : b ∈ A ∩ B) from h1
obtain (c : U) (h5 : c ∈ A ∩ C) from h2
obtain (a : U) (h6 : a ∈ A) (h7 : ∀ (y z : U),

y ∈ A → z ∈ A → y = z) from h3
define at h4; define at h5
have h8 : b = c := h7 b c h4.left h5.left
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : ∃ (x : U),
x ∈ A ∩ B

h2 : ∃ (x : U),
x ∈ A ∩ C

h3 : ∃! (x : U), x ∈ A
b : U
h4 : b ∈ A ∧ b ∈ B
c : U
h5 : c ∈ A ∧ c ∈ C
a : U
h6 : a ∈ A
h7 : ∀ (y z : U),
y ∈ A → z ∈ A → y = z

h8 : b = c
⊢ ∃ (x : U), x ∈ B ∩ C

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

90

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

For our next step, we will need a new tactic. Since we have h8 : b = c, we should be able to
replace b with c anywhere it appears. The tactic that allows us to do this called rewrite. If h
is a proof of any equation s = t, then rewrite [h] will replace all occurrences of s in the goal
with t. Notice that it is the left side of the equation that is replaced with the right side; if you
want the replacement to go in the other direction, so that t is replaced with s, you can use
rewrite [←h]. (Alternatively, since h.symm is a proof of t = s, you can use rewrite [h.symm].)
You can also apply the rewrite tactic to biconditional statements. If you have h : P ↔ Q, then
rewrite [h] will cause all occurrences of P in the goal to be replaced with Q (and rewrite [←h]
will replace Q with P).

As with many other tactics, you can add at h' to specify that the replacement should be
done in the given h' rather than the goal. In our case, rewrite [h8] at h4 will change both
occurrences of b in h4 to c.

Lean File

theorem Example_3_6_4 (U : Type) (A B C : Set U)
(h1 : ∃ (x : U), x ∈ A ∩ B)
(h2 : ∃ (x : U), x ∈ A ∩ C)
(h3 : ∃! (x : U), x ∈ A) :
∃ (x : U), x ∈ B ∩ C := by

obtain (b : U) (h4 : b ∈ A ∩ B) from h1
obtain (c : U) (h5 : c ∈ A ∩ C) from h2
obtain (a : U) (h6 : a ∈ A) (h7 : ∀ (y z : U),

y ∈ A → z ∈ A → y = z) from h3
define at h4; define at h5
have h8 : b = c := h7 b c h4.left h5.left
rewrite [h8] at h4
::::
done

Tactic State in Infoview

U : Type
A B C : Set U
h1 : ∃ (x : U),
x ∈ A ∩ B

h2 : ∃ (x : U),
x ∈ A ∩ C

h3 : ∃! (x : U), x ∈ A
b c : U
h4 : c ∈ A ∧ c ∈ B
h5 : c ∈ A ∧ c ∈ C
a : U
h6 : a ∈ A
h7 : ∀ (y z : U),
y ∈ A → z ∈ A → y = z

h8 : b = c
⊢ ∃ (x : U), x ∈ B ∩ C

Now the right sides of h4 and h5 tell us that we can prove the goal by plugging in c for x. Here
is the complete proof:

theorem Example_3_6_4 (U : Type) (A B C : Set U)
(h1 : ∃ (x : U), x ∈ A ∩ B)
(h2 : ∃ (x : U), x ∈ A ∩ C)
(h3 : ∃! (x : U), x ∈ A) :
∃ (x : U), x ∈ B ∩ C := by

obtain (b : U) (h4 : b ∈ A ∩ B) from h1
obtain (c : U) (h5 : c ∈ A ∩ C) from h2

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

91

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

obtain (a : U) (h6 : a ∈ A) (h7 : ∀ (y z : U),
y ∈ A → z ∈ A → y = z) from h3

define at h4; define at h5
have h8 : b = c := h7 b c h4.left h5.left
rewrite [h8] at h4
show ∃ (x : U), x ∈ B ∩ C from

Exists.intro c (And.intro h4.right h5.right)
done

You might want to compare the Lean proof above to the proof of this theorem as it appears
in HTPI (HTPI p. 160):

Theorem. Suppose 𝐴, 𝐵, and 𝐶 are sets, 𝐴 and 𝐵 are not disjoint, 𝐴 and 𝐶 are not disjoint,
and 𝐴 has exactly one element. Then 𝐵 and 𝐶 are not disjoint

Proof. Since 𝐴 and 𝐵 are not disjoint, we can let 𝑏 be something such that 𝑏 ∈ 𝐴 and 𝑏 ∈ 𝐵.
Similarly, since 𝐴 and 𝐶 are not disjoint, there is some object 𝑐 such that 𝑐 ∈ 𝐴 and 𝑐 ∈ 𝐶.
Since 𝐴 has only one element, we must have 𝑏 = 𝑐. Thus 𝑏 = 𝑐 ∈ 𝐵 ∩ 𝐶 and therefore 𝐵 and
𝐶 are not disjoint.

Before ending this section, we return to the question of how you can tell if a theorem you want
to use is in Lean’s library. In an earlier example, we guessed that the commutative law for
“or” might be in Lean’s library, and we were then able to use the #check command to confirm
it. But there is another technique that we could have used: the tactic apply?, which asks Lean
to search through its library of theorems to see if there is one that could be applied to prove
the goal. Let’s return to our proof of the theorem union_comm, which started like this:

Lean File

theorem union_comm {U : Type} (X Y : Set U) :
X ∪ Y = Y ∪ X := by

apply Set.ext
fix x : U
define : x ∈ X ∪ Y
define : x ∈ Y ∪ X
::::
done

Tactic State in Infoview

▼ case h
U : Type
X Y : Set U
x : U
⊢ x ∈ X ∨ x ∈ Y ↔
x ∈ Y ∨ x ∈ X

Now let’s give the apply? tactic a try.

theorem union_comm {U : Type} (X Y : Set U) :
X ∪ Y = Y ∪ X := by

apply Set.ext

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

92

https://doi.org/10.1017/9781108539890

3.6. Existence and Uniqueness Proofs

fix x : U
define : x ∈ X ∪ Y
define : x ∈ Y ∪ X
::::::
apply?
done

It takes a few seconds for Lean to search its library of theorems, but eventually a blue squiggle
appears under apply?, indicating that the tactic has produced an answer. You will find the
answer in the Infoview pane: Try this: exact Or.comm. The word exact is the name of a tactic
that we have not discussed; it is a shorthand for show _ from, where the blank gets filled in
with the goal. Thus, you can think of apply?’s answer as a shortened form of the tactic

show x ∈ X ∨ x ∈ Y ↔ x ∈ Y ∨ x ∈ X from Or.comm

The command #check @Or.comm will tell you that Or.comm is just an alternative name for the
theorem or_comm. So the step suggested by the apply? tactic is essentially the same as the
step we used earlier to complete the proof.

Usually your proof will be more readable if you use the show tactic to state explicitly the goal
that is being proven. This also gives Lean a chance to correct you if you have become confused
about what goal you are proving. But sometimes—for example, if the goal is very long—it is
convenient to use the exact tactic instead. You might think of exact as meaning “the following
is a term-mode proof that is exactly what is needed to prove the goal.”

The apply? tactic has not only come up with a suggested tactic, it has applied that tactic, and
the proof is now complete. You can confirm that the tactic completes the proof by replacing
the line apply? in the proof with apply?’s suggested exact tactic.

The apply? tactic is somewhat unpredictable; sometimes it is able to find the right theorem in
the library, and sometimes it isn’t. But it is always worth a try. There are also tools available on
the internet for searching Lean’s library, including LeanSearch, Moogle, and Loogle. Another
way to try to find theorems is to visit the documentation page for Lean’s mathematics library,
which can be found at https://leanprover-community.github.io/mathlib4_docs/.

Exercises

1. theorem Exercise_3_4_15 (U : Type) (B : Set U) (F : Set (Set U)) :
⋃₀ {X : Set U | ∃ (A : Set U), A ∈ F ∧ X = A \ B}
⊆ ⋃₀ (F \ P B) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

93

https://leansearch.net
https://www.moogle.ai
https://loogle.lean-lang.org
https://leanprover-community.github.io/mathlib4_docs/
https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

2. theorem Exercise_3_5_9 (U : Type) (A B : Set U)
(h1 : P (A ∪ B) = P A ∪ P B) : A ⊆ B ∨ B ⊆ A := by

--Hint: Start like this:
have h2 : A ∪ B ∈ P (A ∪ B) := sorry

::::
done

3. theorem Exercise_3_6_6b (U : Type) :
∃! (A : Set U), ∀ (B : Set U), A ∪ B = A := sorry

4. theorem Exercise_3_6_7b (U : Type) :
∃! (A : Set U), ∀ (B : Set U), A ∩ B = A := sorry

5. theorem Exercise_3_6_8a (U : Type) : ∀ (A : Set U),
∃! (B : Set U), ∀ (C : Set U), C \ A = C ∩ B := sorry

6. theorem Exercise_3_6_10 (U : Type) (A : Set U)
(h1 : ∀ (F : Set (Set U)), ⋃₀ F = A → A ∈ F) :
∃! (x : U), x ∈ A := by

--Hint: Start like this:
set F0 : Set (Set U) := {X : Set U | X ⊆ A ∧ ∃! (x : U), x ∈ X}
--Now F0 is in the tactic state, with the definition above
have h2 : ⋃₀ F0 = A := sorry

::::
done

3.7. More Examples of Proofs

It is finally time to discuss proofs involving algebraic reasoning. Lean has types for several
different kinds of numbers. Nat is the type of natural numbers—that is, the numbers 0, 1, 2,
…. Int is the type of integers, Rat is the type of rational numbers, Real is the type of real
numbers, and Complex is the type of complex numbers. Lean also uses the notation ℕ, ℤ, ℚ, ℝ,
and ℂ for these types. (If you want to use those names for the number types, you can enter
them by typing \N, \Z, \Q, \R, and \C.) To write formulas involving arithmetic operations, you
should use the symbols + for addition, - for subtraction, * for multiplication, / for division,
and ^ for exponentiation. You can enter the symbols ≤, ≥, and ≠ by typing \le, \ge, and \ne,
respectively. We will discuss some of the more subtle points of algebraic reasoning in Chapter

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

94

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

6. For the moment, you are best off avoiding subtraction and division when working with
natural numbers and avoiding division when working with integers.

To see what’s involved in proving theorems about numbers in Lean, we’ll turn to a few examples
from earlier in Chapter 3 of HTPI. We begin with Theorem 3.3.7, which concerns divisibility
of integers. As in HTPI, for integers x and y, we will write x ∣ y to mean that x divides y, or
y is divisible by x. The formal definition is that x ∣ y means that there is an integer k such
that y = x * k. For example, 3 ∣ 12, since 12 = 3 * 4. Lean knows this notation, but there is
an important warning: to type the vertical line that means “divides,” you must type \|, not
simply |. (There are two slightly different vertical line symbols, and you have to look closely
to see that they are different: | and ∣. It is the second one that means “divides” in Lean, and
to enter it you must type \|.) Here is Theorem 3.3.7, written using our usual rephrasing of a
statement of the form A ∧ B → C as A → B → C.

Lean File

theorem Theorem_3_3_7 :
∀ (a b c : Int), a ∣ b → b ∣ c → a ∣ c := by

::::
done

Tactic State in Infoview

⊢ ∀ (a b c : ℤ),
a ∣ b → b ∣ c → a ∣ c

Of course, we begin the proof by introducing arbitrary integers a, b, and c, and assuming a ∣
b and b ∣ c. We also write out the definitions of our assumptions and the goal.

Lean File

theorem Theorem_3_3_7 :
∀ (a b c : Int), a ∣ b → b ∣ c → a ∣ c := by

fix a : Int; fix b : Int; fix c : Int
assume h1 : a ∣ b; assume h2 : b ∣ c
define at h1; define at h2; define
::::
done

Tactic State in Infoview

a b c : ℤ
h1 : ∃ (c : ℤ),
b = a * c

h2 : ∃ (c_1 : ℤ),
c = b * c_1

⊢ ∃ (c_1 : ℤ),
c = a * c_1

We always use existential givens right away, so we use h1 and h2 to introduce two new variables,
m and n.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

95

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_3_7 :
∀ (a b c : Int), a ∣ b → b ∣ c → a ∣ c := by

fix a : Int; fix b : Int; fix c : Int
assume h1 : a ∣ b; assume h2 : b ∣ c
define at h1; define at h2; define
obtain (m : Int) (h3 : b = a * m) from h1
obtain (n : Int) (h4 : c = b * n) from h2
::::
done

Tactic State in Infoview

a b c : ℤ
h1 : ∃ (c : ℤ),
b = a * c

h2 : ∃ (c_1 : ℤ),
c = b * c_1

m : ℤ
h3 : b = a * m
n : ℤ
h4 : c = b * n
⊢ ∃ (c_1 : ℤ),
c = a * c_1

If we substitute the value for b given in h3 into h4, we will see how to reach the goal. Of course,
the rewrite tactic is what we need for this.

Lean File

theorem Theorem_3_3_7 :
∀ (a b c : Int), a ∣ b → b ∣ c → a ∣ c := by

fix a : Int; fix b : Int; fix c : Int
assume h1 : a ∣ b; assume h2 : b ∣ c
define at h1; define at h2; define
obtain (m : Int) (h3 : b = a * m) from h1
obtain (n : Int) (h4 : c = b * n) from h2
rewrite [h3] at h4 --h4 : c = a * m * n
::::
done

Tactic State in Infoview

a b c : ℤ
h1 : ∃ (c : ℤ),
b = a * c

h2 : ∃ (c_1 : ℤ),
c = b * c_1

m : ℤ
h3 : b = a * m
n : ℤ
h4 : c = a * m * n
⊢ ∃ (c_1 : ℤ),
c = a * c_1

Looking at h4, we see that the value we should use for c_1 in the goal is m * n.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

96

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_3_7 :
∀ (a b c : Int), a ∣ b → b ∣ c → a ∣ c := by

fix a : Int; fix b : Int; fix c : Int
assume h1 : a ∣ b; assume h2 : b ∣ c
define at h1; define at h2; define
obtain (m : Int) (h3 : b = a * m) from h1
obtain (n : Int) (h4 : c = b * n) from h2
rewrite [h3] at h4 --h4 : c = a * m * n
apply Exists.intro (m * n)
::::
done

Tactic State in Infoview

a b c : ℤ
h1 : ∃ (c : ℤ),
b = a * c

h2 : ∃ (c_1 : ℤ),
c = b * c_1

m : ℤ
h3 : b = a * m
n : ℤ
h4 : c = a * m * n
⊢ c = a * (m * n)

Note that in the application of Exists.intro, the parentheses around m * n are necessary to
help Lean parse the line correctly. Comparing h4 to the goal, you might think that we can
finish the proof with show c = a * (m * n) from h4. But if you try it, you will get an error
message. What’s the problem? The difference in the parentheses is the clue. Lean groups the
arithmetic operations +, -, *, and / to the left, so h4 means h4 : c = (a * m) * n, which is
not quite the same as the goal. To prove the goal, we will need to apply the associative law
for multiplication.

We have already seen that and_assoc is Lean’s name for the associative law for “and”. Perhaps
you can guess that the name for the associative law for multiplication is mul_assoc. If you type
#check @mul_assoc, Lean’s response will be:

@mul_assoc : ∀ {G : Type u_1} [inst : Semigroup G] (a b c : G),
a * b * c = a * (b * c)

The implicit arguments in this cases are a little complicated (the expression [inst : Semigroup
G] represents yet another kind of implicit argument). But what they mean is that mul_assoc
can be used to prove any statement of the form ∀ (a b c : G), a * b * c = a * (b * c), as
long as G is a type that has an associative multiplication operation. In particular, mul_assoc
can be used as a proof of ∀ (a b c : Int), a * b * c = a * (b * c). (There are also versions
of this theorem for particular number types. You can use the #check command to verify the
theorems Nat.mul_assoc : ∀ (a b c : ℕ), a * b * c = a * (b * c), Int.mul_assoc : ∀ (a b
c : ℤ), a * b * c = a * (b * c), and so on.)

Returning to our proof of Theorem 3.3.7, by three applications of universal instantiation,
mul_assoc a m n is a proof of a * m * n = a * (m * n), and that is exactly what we need to
finish the proof. The tactic rewrite [mul_assoc a m n] at h4 will replace a * m * n in h4 with
a * (m * n).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

97

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_3_7 :
∀ (a b c : Int), a ∣ b → b ∣ c → a ∣ c := by

fix a : Int; fix b : Int; fix c : Int
assume h1 : a ∣ b; assume h2 : b ∣ c
define at h1; define at h2; define
obtain (m : Int) (h3 : b = a * m) from h1
obtain (n : Int) (h4 : c = b * n) from h2
rewrite [h3] at h4 --h4 : c = a * m * n
apply Exists.intro (m * n)
rewrite [mul_assoc a m n] at h4
::::
done

Tactic State in Infoview

a b c : ℤ
h1 : ∃ (c : ℤ),
b = a * c

h2 : ∃ (c_1 : ℤ),
c = b * c_1

m : ℤ
h3 : b = a * m
n : ℤ
h4 : c = a * (m * n)
⊢ c = a * (m * n)

By the way, this is a case in which Lean could have figured out some details on its own. If we
had used rewrite [mul_assoc _ _ _] at h4, then Lean would have figured out that the blanks
had to be filled in with a, m, and n. And as with the apply tactic, blanks at the end of rewrite
rules can be left out, so even rewrite [mul_assoc] at h4 would have worked.

Of course, now h4 really does match the goal exactly, so we can use it to complete the proof.

theorem Theorem_3_3_7 :
∀ (a b c : Int), a ∣ b → b ∣ c → a ∣ c := by

fix a : Int; fix b : Int; fix c : Int
assume h1 : a ∣ b; assume h2 : b ∣ c
define at h1; define at h2; define
obtain (m : Int) (h3 : b = a * m) from h1
obtain (n : Int) (h4 : c = b * n) from h2
rewrite [h3] at h4 --h4 : c = a * m * n
apply Exists.intro (m * n)
rewrite [mul_assoc a m n] at h4
show c = a * (m * n) from h4
done

As usual, you might find it instructive to compare the Lean proof above to the proof of this
theorem in HTPI.

For our next example, we’ll do a somewhat more complex proof concerning divisibility. Here
is the proof from HTPI (HTPI p. 139).

Theorem 3.4.7. For every integer 𝑛, 6 ∣ 𝑛 iff 2 ∣ 𝑛 and 3 ∣ 𝑛.

Proof. Let 𝑛 be an arbitrary integer.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

98

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

(→) Suppose 6 ∣ 𝑛. Then we can choose an integer 𝑘 such that 6𝑘 = 𝑛. Therefore 𝑛 = 6𝑘 =
2(3𝑘), so 2 ∣ 𝑛, and similarly 𝑛 = 6𝑘 = 3(2𝑘), so 3 ∣ 𝑛.
(←) Suppose 2 ∣ 𝑛 and 3 ∣ 𝑛. Then we can choose integers 𝑗 and 𝑘 such that 𝑛 = 2𝑗 and 𝑛 = 3𝑘.
Therefore 6(𝑗 − 𝑘) = 6𝑗 − 6𝑘 = 3(2𝑗) − 2(3𝑘) = 3𝑛 − 2𝑛 = 𝑛, so 6 ∣ 𝑛.

Let’s try writing the proof in Lean. We use exactly the same strategy as in the HTPI proof: we
begin by fixing an arbitrary integer n, and then we prove the two directions of the biconditional
separately.

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
::::
done

Tactic State in Infoview

▼ case mp
n : ℤ
⊢ 6 ∣ n → 2 ∣ n ∧ 3 ∣ n
▼ case mpr
n : ℤ
⊢ 2 ∣ n ∧ 3 ∣ n → 6 ∣ n

For the left-to-right direction, we assume 6 ∣ n, and since the definition of this assumption is
an existential statement, we immediately apply existential instantiation.

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
· -- (→)

assume h1 : 6 ∣ n; define at h1
obtain (k : Int) (h2 : n = 6 * k) from h1
::::
done

· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp
n : ℤ
h1 : ∃ (c : ℤ),
n = 6 * c

k : ℤ
h2 : n = 6 * k
⊢ 2 ∣ n ∧ 3 ∣ n

Our goal is now a conjunction, so we prove the two conjuncts separately. Focusing just on the
first one, 2 ∣ n, we write out the definition to decide how to proceed.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

99

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
· -- (→)

assume h1 : 6 ∣ n; define at h1
obtain (k : Int) (h2 : n = 6 * k) from h1
apply And.intro
· -- Proof that 2 ∣ n

define
::::
done

· -- Proof that 3 ∣ n

::::
done

done
· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp.left
n : ℤ
h1 : ∃ (c : ℤ),
n = 6 * c

k : ℤ
h2 : n = 6 * k
⊢ ∃ (c : ℤ), n = 2 * c

Since we have n = 6 * k = 2 * 3 * k, it looks like 3 * k is the value we should use for c.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

100

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
· -- (→)

assume h1 : 6 ∣ n; define at h1
obtain (k : Int) (h2 : n = 6 * k) from h1
apply And.intro
· -- Proof that 2 ∣ n

define
apply Exists.intro (3 * k)
::::
done

· -- Proof that 3 ∣ n

::::
done

done
· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp.left
n : ℤ
h1 : ∃ (c : ℤ),
n = 6 * c

k : ℤ
h2 : n = 6 * k
⊢ n = 2 * (3 * k)

Once again, if you think carefully about it, you will see that in order to deduce the goal from
h2, we will need to use the associativity of multiplication to rewrite the goal as n = 2 * 3 *
k. As we have already seen, mul_assoc 2 3 k is a proof of 2 * 3 * k = 2 * (3 * k). Since
we want to replace the right side of this equation with the left in the goal, we’ll use the tactic
rewrite [←mul_assoc 2 3 k].

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

101

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
· -- (→)

assume h1 : 6 ∣ n; define at h1
obtain (k : Int) (h2 : n = 6 * k) from h1
apply And.intro
· -- Proof that 2 ∣ n

define
apply Exists.intro (3 * k)
rewrite [←mul_assoc 2 3 k]
::::
done

· -- Proof that 3 ∣ n

::::
done

done
· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp.left
n : ℤ
h1 : ∃ (c : ℤ),
n = 6 * c

k : ℤ
h2 : n = 6 * k
⊢ n = 2 * 3 * k

Do we have to convince Lean that 2 * 3 = 6? No, remember that Lean works out definitions
on its own. Lean knows the definition of multiplication, and it knows that, according to that
definition, 2 * 3 is equal to 6. So it regards n = 6 * k and n = 2 * 3 * k as definitionally
equal, and therefore it will recognize h2 as a proof of the goal.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

102

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
· -- (→)

assume h1 : 6 ∣ n; define at h1
obtain (k : Int) (h2 : n = 6 * k) from h1
apply And.intro
· -- Proof that 2 ∣ n

define
apply Exists.intro (3 * k)
rewrite [←mul_assoc 2 3 k]
show n = 2 * 3 * k from h2
done

· -- Proof that 3 ∣ n

::::
done

done
· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mp.right
n : ℤ
h1 : ∃ (c : ℤ),
n = 6 * c

k : ℤ
h2 : n = 6 * k
⊢ 3 ∣ n

The proof of the next goal, 3 ∣ n, is similar, and it completes the left-to-right direction of the
biconditional.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

103

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
· -- (→)

assume h1 : 6 ∣ n; define at h1
obtain (k : Int) (h2 : n = 6 * k) from h1
apply And.intro
· -- Proof that 2 ∣ n

define
apply Exists.intro (3 * k)
rewrite [←mul_assoc 2 3 k]
show n = 2 * 3 * k from h2
done

· -- Proof that 3 ∣ n
define
apply Exists.intro (2 * k)
rewrite [←mul_assoc 3 2 k]
show n = 3 * 2 * k from h2
done

done
· -- (←)

::::
done

done

Tactic State in Infoview

▼ case mpr
n : ℤ
⊢ 2 ∣ n ∧ 3 ∣ n → 6 ∣ n

For the right-to-left direction, we begin by assuming 2 ∣ n ∧ 3 ∣ n. We write out the
definitions of 2 ∣ n and 3 ∣ n, and since this gives us two existential givens, we apply
existential instantiation twice. To save space, we won’t repeat the proof of the first half of the
proof in the displays below.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

104

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem Theorem_3_4_7 :
∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by

fix n : Int
apply Iff.intro
· -- (→)

...
· -- (←)

assume h1 : 2 ∣ n ∧ 3 ∣ n
have h2 : 2 ∣ n := h1.left
have h3 : 3 ∣ n := h1.right
define at h2; define at h3; define
obtain (j : Int) (h4 : n = 2 * j) from h2
obtain (k : Int) (h5 : n = 3 * k) from h3
::::
done

done

Tactic State in Infoview

▼ case mpr
n : ℤ
h1 : 2 ∣ n ∧ 3 ∣ n
h2 : ∃ (c : ℤ),
n = 2 * c

h3 : ∃ (c : ℤ),
n = 3 * c

j : ℤ
h4 : n = 2 * j
k : ℤ
h5 : n = 3 * k
⊢ ∃ (c : ℤ),
n = 6 * c

The next step in the HTPI proof is a string of equations that proves 6(𝑗 − 𝑘) = 𝑛, which
establishes that 6 ∣ 𝑛. Let’s try to do the same thing in Lean, using a calculational proof:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

105

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

theorem
::::::::::::::
Theorem_3_4_7 :

∀ (n : Int), 6 ∣ n ↔ 2 ∣ n ∧ 3 ∣ n := by
fix n : Int
apply Iff.intro
· -- (→)

...
· -- (←)

assume h1 : 2 ∣ n ∧ 3 ∣ n
have h2 : 2 ∣ n := h1.left
have h3 : 3 ∣ n := h1.right
define at h2; define at h3; define
obtain (j : Int) (h4 : n = 2 * j) from h2
obtain (k : Int) (h5 : n = 3 * k) from h3
have h6 : 6 * (j - k) = n :=

calc 6 * (j - k)
_ = 6 * j - 6 * k := sorry
_ = 3 * (2 * j) - 2 * (3 * k) := sorry
_ = 3 * n - 2 * n := sorry
_ = (3 - 2) * n := sorry
_ = n := sorry

show ∃ (c : Int), n = 6 * c from
Exists.intro (j - k) h6.symm

done
done

Tactic State in Infoview

No goals

Sometimes the easiest way to write a calculational proof is to justify each line with sorry and
then go back and fill in real justifications. Lean has accepted the proof above, so we know
that we’ll have a complete proof if we can replace each sorry with a justification.

To justify the first line of the calculational proof, try replacing sorry with by apply?. Lean
comes up with a justification: Int.mul_sub 6 j k. The command #check @Int.mul_sub tells us
that the theorem Int.mul_sub means

Int.mul_sub : ∀ (a b c : ℤ), a * (b - c) = a * b - a * c

Thus, we can fill in Int.mul_sub 6 j k as a proof of the first equation.

It looks like we’ll have to use the associativity of multiplication again to prove the second
equation, but it will take more than one step. Let’s try writing a tactic-mode proof. In the
display below, we’ll just focus on the calculational proof.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

106

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

have h6 : 6 * (j - k) = n :=
calc 6 * (j - k)

_ = 6 * j - 6 * k := Int.mul_sub 6 j k
_ = 3 * (2 * j) - 2 * (3 * k) := by

::::
done

_ = 3 * n - 2 * n := sorry
_ = (3 - 2) * n := sorry
_ = n := sorry

Tactic State in Infoview

n : ℤ
h1 : 2 ∣ n ∧ 3 ∣ n
h2 : ∃ (c : ℤ),
n = 2 * c

h3 : ∃ (c : ℤ),
n = 3 * c

j : ℤ
h4 : n = 2 * j
k : ℤ
h5 : n = 3 * k
⊢ 6 * j - 6 * k =
3 * (2 * j) -

2 * (3 * k)

To justify the second equation, we’ll have to use associativity to rewrite both 3 * (2 * j) as
3 * 2 * j and also 2 * (3 * k) as 2 * 3 * k. So we apply the rewrite tactic to both of the
proofs mul_assoc 3 2 j : 3 * 2 * j = 3 * (2 * j) and mul_assoc 2 3 k : 2 * 3 * k = 2 * (3
* k):

Lean File

have h6 : 6 * (j - k) = n :=
calc 6 * (j - k)

_ = 6 * j - 6 * k := Int.mul_sub 6 j k
_ = 3 * (2 * j) - 2 * (3 * k) := by

rewrite [←mul_assoc 3 2 j]
rewrite [←mul_assoc 2 3 k]
::::
done

_ = 3 * n - 2 * n := sorry
_ = (3 - 2) * n := sorry
_ = n := sorry

Tactic State in Infoview

n : ℤ
h1 : 2 ∣ n ∧ 3 ∣ n
h2 : ∃ (c : ℤ),
n = 2 * c

h3 : ∃ (c : ℤ),
n = 3 * c

j : ℤ
h4 : n = 2 * j
k : ℤ
h5 : n = 3 * k
⊢ 6 * j - 6 * k =
3 * 2 * j -

2 * 3 * k

To finish off the justification of the second equation, we’ll use the theorem Eq.refl. The
command #check @Eq.refl gives the result

@Eq.refl : ∀ {α : Sort u_1} (a : α), a = a

Ignoring the implicit argument α, this should remind you of the theorem Iff.refl : ∀ (a :
Prop), a ↔ a. Recall that we were able to use Iff.refl _ to prove not only any statement

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

107

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

of the form a ↔ a, but also statements of the form a ↔ a', where a and a' are definitionally
equal. Similarly, Eq.refl _ will prove any equation of the form a = a', where a and a' are
definitionally equal. Since Lean knows that, by definition, 3 * 2 = 6 and 2 * 3 = 6, the goal
has this form. Thus we can complete the proof with the tactic show 6 * j - 6 * k = 3 * 2
* j - 2 * 3 * k from Eq.refl _. As we saw earlier, a shorter version of this would be exact
Eq.refl _. But this situation comes up often enough that there is an even shorter version: the
tactic rfl can be used as a shorthand for either exact Eq.refl _ or exact Iff.refl _. In other
words, in a tactic-mode proof, if the goal has one of the forms a = a' or a ↔ a', where a and
a' are definitionally equal, then the tactic rfl will prove the goal. So rfl will finish off the
justification of the second equation, and we can move on to the third.

Lean File

have h6 : 6 * (j - k) = n :=
calc 6 * (j - k)

_ = 6 * j - 6 * k := Int.mul_sub 6 j k
_ = 3 * (2 * j) - 2 * (3 * k) := by

rewrite [←mul_assoc 3 2 j]
rewrite [←mul_assoc 2 3 k]
rfl
done

_ = 3 * n - 2 * n := by

::::
done

_ = (3 - 2) * n := sorry
_ = n := sorry

Tactic State in Infoview

n : ℤ
h1 : 2 ∣ n ∧ 3 ∣ n
h2 : ∃ (c : ℤ),
n = 2 * c

h3 : ∃ (c : ℤ),
n = 3 * c

j : ℤ
h4 : n = 2 * j
k : ℤ
h5 : n = 3 * k
⊢ 3 * (2 * j) -
2 * (3 * k) =

3 * n - 2 * n

To justify the third equation we have to substitute n for both 2 * j and 3 * k. We can use h4
and h5 in the rewrite tactic to do this. In fact, we can do it in one step: you can put a list of
proofs of equations or biconditionals inside the brackets, and the rewrite tactic will perform
all of the replacements, one after another. In our case, the tactic rewrite [←h4, ←h5] will first
replace 2 * j in the goal with n, and then it will replace 3 * k with n.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

108

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

Lean File

have h6 : 6 * (j - k) = n :=
calc 6 * (j - k)

_ = 6 * j - 6 * k := Int.mul_sub 6 j k
_ = 3 * (2 * j) - 2 * (3 * k) := by

rewrite [←mul_assoc 3 2 j]
rewrite [←mul_assoc 2 3 k]
rfl
done

_ = 3 * n - 2 * n := by
rewrite [←h4, ←h5]
::::
done

_ = (3 - 2) * n := sorry
_ = n := sorry

Tactic State in Infoview

n : ℤ
h1 : 2 ∣ n ∧ 3 ∣ n
h2 : ∃ (c : ℤ),
n = 2 * c

h3 : ∃ (c : ℤ),
n = 3 * c

j : ℤ
h4 : n = 2 * j
k : ℤ
h5 : n = 3 * k
⊢ 3 * n - 2 * n =
3 * n - 2 * n

Of course, the rfl tactic will now finish off the justification of the third equation.

The fourth equation is 3 * n - 2 * n = (3 - 2) * n. It looks like the algebraic law we need to
justify this is a lot like the one that was used in the first equation, but with the multiplication
to the right of the subtraction rather than to the left. It shouldn’t be surprising, therefore,
that the name of the theorem we need is Int.sub_mul. The command #check @Int.sub_mul
gives the response

Int.sub_mul : ∀ (a b c : ℤ), (a - b) * c = a * c - b * c

so Int.sub_mul 3 2 n is a proof of (3 - 2) * n = 3 * n - 2 * n. But the fourth equation has
the sides of this equation reversed, so to justify it we need (Int.sub_mul 3 2 n).symm.

Finally, the fifth equation is (3 - 2) * n = n. Why is this true? Because it is definitionally
equal to 1 * n = n. Is there a theorem to justify this last equation? One way to find the
answer is to type in this example:

example (n : Int) : 1 * n = n := by
::::::
apply?

Lean responds with exact Int.one_mul n, and #check @Int.one_mul yields

Int.one_mul : ∀ (a : ℤ), 1 * a = a

So Int.one_mul n should justify the last equation. Here’s the complete calculational proof,
where we have shortened the second step a bit by doing both rewrites in one step. When a
tactic proof is short enough that it can be written on one line, we generally leave off done.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

109

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

have h6 : 6 * (j - k) = n :=
calc 6 * (j - k)

_ = 6 * j - 6 * k := Int.mul_sub 6 j k
_ = 3 * (2 * j) - 2 * (3 * k) := by

rewrite [←mul_assoc 3 2 j, ←mul_assoc 2 3 k]; rfl
_ = 3 * n - 2 * n := by rewrite [←h4, ←h5]; rfl
_ = (3 - 2) * n := (Int.sub_mul 3 2 n).symm
_ = n := Int.one_mul n

Whew! This example illustrates why algebraic reasoning in Lean can be difficult. But one
reason why this proof was challenging is that we justified all of our steps from basic algebraic
principles. Fortunately, there are more powerful tactics that can automate some algebraic
reasoning. For example, the tactic ring can combine algebraic laws involving addition, sub-
traction, multiplication, and exponentiation with natural number exponents to prove many
equations in one step. Also, the tactic rw is a variant of rewrite that automatically applies
rfl after the rewriting if it can be used to finish the proof. Here’s a shortened version of our
calculational proof that uses these tactics.

have h6 : 6 * (j - k) = n :=
calc 6 * (j - k)

_ = 3 * (2 * j) - 2 * (3 * k) := by ring
_ = 3 * n - 2 * n := by rw [←h4, ←h5]
_ = n := by ring

By the way, the theorems Int.mul_sub, Int.sub_mul, and Int.one_mul that we used earlier
are the integer versions of more general theorems mul_sub, sub_mul, and one_mul. The #check
command tells us what these general theorems say:

@mul_sub : ∀ {α : Type u_1} [inst : NonUnitalNonAssocRing α]
(a b c : α), a * (b - c) = a * b - a * c

@sub_mul : ∀ {α : Type u_1} [inst : NonUnitalNonAssocRing α]
(a b c : α), (a - b) * c = a * c - b * c

@one_mul : ∀ {M : Type u_1} [inst : MulOneClass M]
(a : M), 1 * a = a

The implicit arguments say that these theorems apply in any number system with the appro-
priate algebraic properties. We’ll use the third theorem in our next example, which involves
algebraic reasoning about real numbers. You can use the #check command to find the meanings
of the other theorems we use in this proof.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

110

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

theorem Example_3_5_4 (x : Real) (h1 : x ≤ x ^ 2) : x ≤ 0 ∨ 1 ≤ x := by
or_right with h2 --h2 : ¬x ≤ 0; Goal : 1 ≤ x
have h3 : 0 < x := lt_of_not_le h2
have h4 : 1 * x ≤ x * x :=

calc 1 * x
_ = x := one_mul x
_ ≤ x ^ 2 := h1
_ = x * x := by ring

show 1 ≤ x from le_of_mul_le_mul_right h4 h3
done

Exercises

1. theorem Exercise_3_3_18a (a b c : Int)
(h1 : a ∣ b) (h2 : a ∣ c) : a ∣ (b + c) := sorry

2. Complete the following proof by justifying the steps in the calculational proof. Remember
that you can use the tactic demorgan : ... to apply one of De Morgan’s laws to just a part
of the goal. You may also find the theorem and_or_left useful. (Use #check to see what the
theorem says.)

theorem Exercise_3_4_6 (U : Type) (A B C : Set U) :
A \ (B ∩ C) = (A \ B) ∪ (A \ C) := by

apply Set.ext
fix x : U
show x ∈ A \ (B ∩ C) ↔ x ∈ A \ B ∪ A \ C from

calc x ∈ A \ (B ∩ C)
_ ↔ x ∈ A ∧ ¬(x ∈ B ∧ x ∈ C) := sorry
_ ↔ x ∈ A ∧ (x ∉ B ∨ x ∉ C) := sorry
_ ↔ (x ∈ A ∧ x ∉ B) ∨ (x ∈ A ∧ x ∉ C) := sorry
_ ↔ x ∈ (A \ B) ∪ (A \ C) := sorry

done

For the next exercise you will need the following definitions:

def even (n : Int) : Prop := ∃ (k : Int), n = 2 * k

def odd (n : Int) : Prop := ∃ (k : Int), n = 2 * k + 1

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

111

https://doi.org/10.1017/9781108539890

3.7. More Examples of Proofs

These definitions tell Lean that if n has type Int, then even n means ∃ (k : Int), n = 2 * k
and odd n means ∃ (k : Int), n = 2 * k + 1.

3. theorem Exercise_3_4_10 (x y : Int)
(h1 : odd x) (h2 : odd y) : even (x - y) := sorry

4. theorem Exercise_3_4_27a :
∀ (n : Int), 15 ∣ n ↔ 3 ∣ n ∧ 5 ∣ n := sorry

5. theorem Like_Exercise_3_7_5 (U : Type) (F : Set (Set U))
(h1 : P (⋃₀ F) ⊆ ⋃₀ {P A | A ∈ F}) :
∃ (A : Set U), A ∈ F ∧ ∀ (B : Set U), B ∈ F → B ⊆ A := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

112

https://doi.org/10.1017/9781108539890

4 Relations

4.1. Ordered Pairs and Cartesian Products

Section 4.1 of How To Prove It defines the Cartesian product 𝐴 × 𝐵 of two sets 𝐴 and 𝐵 to
be the set of all ordered pairs (𝑎, 𝑏), where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. However, in Lean, Cartesian
product is an operation on types, not sets. If A and B are types, then A × B is the type of
ordered pairs (a, b), where a has type A and b has type B. (To enter the symbol × in Lean,
type \times or \x.) In other words, if you have a : A and b : B, then (a, b) is an object of
type A × B. There is also notation for the first and second coordinates of an ordered pair. If p
has type A × B, then p.fst is the first coordinate of p, and p.snd is the second coordinate. You
can also use the notation p.1 for the first coordinate of p and p.2 for the second coordinate.
This means that p = (p.fst, p.snd) = (p.1, p.2).

4.2. Relations

Section 4.2 of HTPI defines a relation from 𝐴 to 𝐵 to be a subset of 𝐴 × 𝐵. In other words, if
𝑅 is a relation from 𝐴 to 𝐵, then 𝑅 is a set whose element are ordered pairs (𝑎, 𝑏), where 𝑎 ∈ 𝐴
and 𝑏 ∈ 𝐵. We will see in the next section that in Lean, it is convenient to use a somewhat
different definition of relations. Nevertheless, we will take some time in this section to study
sets of ordered pairs. If A and B are types, and R has type Set (A × B), then R is a set whose
elements are ordered pairs (a, b), where a has type A and b has type B.

Section 4.2 of HTPI discusses several concepts concerning relations. Here is how these concepts
are defined in HTPI (HTPI p. 183):

Definition 4.2.3. Suppose 𝑅 is a relation from 𝐴 to 𝐵. Then the domain of 𝑅 is the set

Dom(𝑅) = {𝑎 ∈ 𝐴 ∣ ∃𝑏 ∈ 𝐵((𝑎, 𝑏) ∈ 𝑅)}.

The range of 𝑅 is the set

Ran(𝑅) = {𝑏 ∈ 𝐵 ∣ ∃𝑎 ∈ 𝐴((𝑎, 𝑏) ∈ 𝑅)}.

The inverse of 𝑅 is the relation 𝑅−1 from 𝐵 to 𝐴 define as follows:

𝑅−1 = {(𝑏, 𝑎) ∈ 𝐵 × 𝐴 ∣ (𝑎, 𝑏) ∈ 𝑅}.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

113

https://doi.org/10.1017/9781108539890

4.2. Relations

Finally, suppose 𝑅 is a relation from 𝐴 to 𝐵 and 𝑆 is a relation from 𝐵 to 𝐶. Then the
composition of 𝑆 and 𝑅 is the relation 𝑆 ∘ 𝑅 from 𝐴 to 𝐶 defined as follows:

𝑆 ∘ 𝑅 = {(𝑎, 𝑐) ∈ 𝐴 × 𝐶 ∣ ∃𝑏 ∈ 𝐵((𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑆)}.

There are several examples in HTPI that illustrate these definitions. We will focus here on
seeing how to work with these concepts in Lean.

We can write corresponding definitions in Lean as follows:

def Dom {A B : Type} (R : Set (A × B)) : Set A :=
{a : A | ∃ (b : B), (a, b) ∈ R}

def Ran {A B : Type} (R : Set (A × B)) : Set B :=
{b : B | ∃ (a : A), (a, b) ∈ R}

def inv {A B : Type} (R : Set (A × B)) : Set (B × A) :=
{(b, a) : B × A | (a, b) ∈ R}

def comp {A B C : Type}
(S : Set (B × C)) (R : Set (A × B)) : Set (A × C) :=

{(a, c) : A × C | ∃ (x : B), (a, x) ∈ R ∧ (x, c) ∈ S}

Definitions in Lean are introduced with the keyword def. In the definition of Dom, we have
declared that A and B are implicit arguments and R is an explicit argument. That means that,
in a Lean file containing these definitions, if we have R : Set (A × B), then we can just write
Dom R for the domain of R, and Lean will figure out for itself what A and B are. After the list
of arguments there is a colon and then the type of Dom R, which is Set A. This is followed by
:= and then the definition of Dom R. The definition says that Dom R is the set of all objects a of
type A such that there is some b of type B with (a, b) ∈ R. This is a direct translation, into
Lean’s type-theory language, of the first part of Definition 4.2.3. The other three definitions
are similar; they define Ran R to be the range of R, inv R to be the inverse of R, and comp S R
to be the composition of S and R.

Here is the main theorem about these concepts, as stated in HTPI (HTPI p. 187):

Theorem 4.2.5. Suppose 𝑅 is a relation from 𝐴 to 𝐵, 𝑆 is a relation from 𝐵 to 𝐶, and 𝑇 is
a relation from 𝐶 to 𝐷. Then:

1. (𝑅−1)−1 = 𝑅.
2. Dom(𝑅−1) = Ran(𝑅).
3. Ran(𝑅−1) = Dom(𝑅).
4. 𝑇 ∘ (𝑆 ∘ 𝑅) = (𝑇 ∘ 𝑆) ∘ 𝑅.
5. (𝑆 ∘ 𝑅)−1 = 𝑅−1 ∘ 𝑆−1.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

114

https://doi.org/10.1017/9781108539890

4.2. Relations

All five parts of this theorem follow directly from the definitions of the relevant concepts. In
fact, in the first three parts, Lean recognizes the two sides of the equation as being definitionally
equal, and therefore the tactic rfl proves those parts:

theorem Theorem_4_2_5_1 {A B : Type}
(R : Set (A × B)) : inv (inv R) = R := by rfl

theorem Theorem_4_2_5_2 {A B : Type}
(R : Set (A × B)) : Dom (inv R) = Ran R := by rfl

theorem Theorem_4_2_5_3 {A B : Type}
(R : Set (A × B)) : Ran (inv R) = Dom R := by rfl

The fourth part will take a little more work to prove. We start the proof like this:

theorem Theorem_4_2_5_4 {A B C D : Type}
(R : Set (A × B)) (S : Set (B × C)) (T : Set (C × D)) :
comp T (comp S R) = comp (comp T S) R := by

apply Set.ext
fix (a, d) : A × D
::::
done

After the apply Set.ext tactic, the goal is

∀ (x : A × D), x ∈ comp T (comp S R) ↔ x ∈ comp (comp T S) R

The next step should be to introduce an arbitrary object of type A × D. We could just call this
object x, but Lean lets us use a shortcut here. An object of type A × D must have the form of
an ordered pair, where the first coordinate has type A and the second has type D. So Lean lets
us write it as an ordered pair right away. That’s what we’ve done in the second step, fix (a,
d) : A × D. This tactic introduces two new variables into the proof, a : A and d : D. (The
proof in HTPI uses a similar shortcut. And we used a similar shortcut in the definitions of
inv R and comp R, where the elements of these sets were written as ordered pairs.)

Here is the complete proof.

theorem Theorem_4_2_5_4 {A B C D : Type}
(R : Set (A × B)) (S : Set (B × C)) (T : Set (C × D)) :
comp T (comp S R) = comp (comp T S) R := by

apply Set.ext
fix (a, d) : A × D
apply Iff.intro
· -- (→)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

115

https://doi.org/10.1017/9781108539890

4.2. Relations

assume h1 : (a, d) ∈ comp T (comp S R)
--Goal : (a, d) ∈ comp (comp T S) R

define --Goal : ∃ (x : B), (a, x) ∈ R ∧ (x, d) ∈ comp T S
define at h1 --h1 : ∃ (x : C), (a, x) ∈ comp S R ∧ (x, d) ∈ T
obtain (c : C) (h2 : (a, c) ∈ comp S R ∧ (c, d) ∈ T) from h1
have h3 : (a, c) ∈ comp S R := h2.left
define at h3 --h3 : ∃ (x : B), (a, x) ∈ R ∧ (x, c) ∈ S
obtain (b : B) (h4 : (a, b) ∈ R ∧ (b, c) ∈ S) from h3
apply Exists.intro b --Goal : (a, b) ∈ R ∧ (b, d) ∈ comp T S
apply And.intro h4.left --Goal : (b, d) ∈ comp T S
define --Goal : ∃ (x : C), (b, x) ∈ S ∧ (x, d) ∈ T
show ∃ (x : C), (b, x) ∈ S ∧ (x, d) ∈ T from

Exists.intro c (And.intro h4.right h2.right)
done

· -- (←)
assume h1 : (a, d) ∈ comp (comp T S) R
define; define at h1
obtain (b : B) (h2 : (a, b) ∈ R ∧ (b, d) ∈ comp T S) from h1
have h3 : (b, d) ∈ comp T S := h2.right
define at h3
obtain (c : C) (h4 : (b, c) ∈ S ∧ (c, d) ∈ T) from h3
apply Exists.intro c
apply And.intro _ h4.right
define
show ∃ (x : B), (a, x) ∈ R ∧ (x, c) ∈ S from

Exists.intro b (And.intro h2.left h4.left)
done

done

Of course, if you have trouble reading this proof, you can enter it into Lean and see how the
tactic state changes over the course of the proof.

Here is a natural way to start the proof of part 5:

theorem Theorem_4_2_5_5 {A B C : Type}
(R : Set (A × B)) (S : Set (B × C)) :
inv (comp S R) = comp (inv R) (inv S) := by

apply Set.ext
fix (c, a) : C × A
apply Iff.intro
· -- (→)

assume h1 : (c, a) ∈ inv (comp S R)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

116

https://doi.org/10.1017/9781108539890

4.2. Relations

--Goal : (c, a) ∈ comp (inv R) (inv S)
define at h1 --h1 : ∃ (x : B), (a, x) ∈ R ∧ (x, c) ∈ S
define --Goal : ∃ (x : B), (c, x) ∈ inv S ∧ (x, a) ∈ inv R
obtain (b : B) (h2 : (a, b) ∈ R ∧ (b, c) ∈ S) from h1
apply Exists.intro b --Goal : (c, b) ∈ inv S ∧ (b, a) ∈ inv R
::::
done

· -- (←)

::::
done

done

After the tactics apply Set.ext and fix (c, a) : C × A, the goal is (c, a) ∈ inv (comp S R)
↔ (c, a) ∈ comp (inv R) (inv S). For the proof of the left-to-right direction, we assume h1 :
(c, a) ∈ inv (comp S R), and we must prove (c, a) ∈ comp (inv R) (inv S). The definition
of h1 is an existential statement, so we apply existential instantiation to obtain b : B and h2
: (a, b) ∈ R ∧ (b, c) ∈ S. The definition of the goal is also an existential statement, and
after the tactic apply Exists.intro b, the goal is (c, b) ∈ inv S ∧ (b, a) ∈ inv R. It looks
like this goal will follow easily from h2, using the definitions of the inverses of S and R.

One way to write out these definitions would be to use the tactics define : (c, b) ∈ inv S
and define : (b, a) ∈ inv R. But we’re going to use this example to illustrate another way
to proceed. To use this alternative method, we’ll need to prove a preliminary theorem before
proving part 5 of Theorem 4.2.5:

theorem inv_def {A B : Type} (R : Set (A × B)) (a : A) (b : B) :
(b, a) ∈ inv R ↔ (a, b) ∈ R := by rfl

Now, any time we have a relation R : Set (A × B) and objects a : A and b : B, the expression
inv_def R a b will be a proof of the statement (b, a) ∈ inv R ↔ (a, b) ∈ R. (Note that
A and B are implicit arguments and don’t need to be specified.) And that means that the
tactic rewrite [inv_def R a b] will change (b, a) ∈ inv R to (a, b) ∈ R. In fact, as we’ve
seen before, you can just write rewrite [inv_def], and Lean will figure out how to apply the
theorem inv_def to rewrite some part of the goal.

Returning to our proof of part 5 of Theorem 4.2.5, recall that after the step apply Exists.intro
b, the goal is (c, b) ∈ inv S ∧ (b, a) ∈ inv R. Rather than using the define tactic to write
out the definitions of the inverses, we’ll use the tactic rewrite [inv_def, inv_def]. Why do
we list inv_def twice in the rewrite tactic? When we ask Lean to use the theorem inv_def as
a rewriting rule, it figures out that inv_def S b c is a proof of the statement (c, b) ∈ inv S
↔ (b, c) ∈ S, which can be used to rewrite the left half of the goal. To rewrite the right half,
we need a different application of the inv_def theorem, inv_def R a b. So we have to ask Lean
to apply the theorem a second time. After the rewrite tactic, the goal is (b, c) ∈ S ∧ (a, b)
∈ R, which will follow easily from h2.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

117

https://doi.org/10.1017/9781108539890

4.2. Relations

The rest of the proof of straightforward. Here is the complete proof.

theorem Theorem_4_2_5_5 {A B C : Type}
(R : Set (A × B)) (S : Set (B × C)) :
inv (comp S R) = comp (inv R) (inv S) := by

apply Set.ext
fix (c, a) : C × A
apply Iff.intro
· -- (→)

assume h1 : (c, a) ∈ inv (comp S R)
--Goal : (c, a) ∈ comp (inv R) (inv S)

define at h1 --h1 : ∃ (x : B), (a, x) ∈ R ∧ (x, c) ∈ S
define --Goal : ∃ (x : B), (c, x) ∈ inv S ∧ (x, a) ∈ inv R
obtain (b : B) (h2 : (a, b) ∈ R ∧ (b, c) ∈ S) from h1
apply Exists.intro b --Goal : (c, b) ∈ inv S ∧ (b, a) ∈ inv R
rewrite [inv_def, inv_def] --Goal : (b, c) ∈ S ∧ (a, b) ∈ R
show (b, c) ∈ S ∧ (a, b) ∈ R from And.intro h2.right h2.left
done

· -- (←)
assume h1 : (c, a) ∈ comp (inv R) (inv S)
define at h1
define
obtain (b : B) (h2 : (c, b) ∈ inv S ∧ (b, a) ∈ inv R) from h1
apply Exists.intro b
rewrite [inv_def, inv_def] at h2
show (a, b) ∈ R ∧ (b, c) ∈ S from And.intro h2.right h2.left
done

done

By the way, an alternative way to complete both directions of this proof would have been to
apply the commutativity of “and”. See if you can guess the name of that theorem (you can
use #check to confirm your guess) and apply it as a third rewriting rule in the rewrite steps.

Exercises

1. theorem Exercise_4_2_9a {A B C : Type} (R : Set (A × B))
(S : Set (B × C)) : Dom (comp S R) ⊆ Dom R := sorry

2. theorem Exercise_4_2_9b {A B C : Type} (R : Set (A × B))
(S : Set (B × C)) : Ran R ⊆ Dom S → Dom (comp S R) = Dom R := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

118

https://doi.org/10.1017/9781108539890

4.2. Relations

3. --Fill in the blank to get a correct theorem and then prove the theorem
theorem Exercise_4_2_9c {A B C : Type} (R : Set (A × B))

(S : Set (B × C)) : ___ → Ran (comp S R) = Ran S := sorry

4. theorem Exercise_4_2_12a {A B C : Type}
(R : Set (A × B)) (S T : Set (B × C)) :
(comp S R) \ (comp T R) ⊆ comp (S \ T) R := sorry

5. Here is an incorrect theorem with an incorrect proof.

Incorrect Theorem. Suppose 𝑅 is a relation from 𝐴 to 𝐵 and 𝑆 and 𝑇 are relations from
𝐵 to 𝐶. Then (𝑆 \ 𝑇) ∘ 𝑅 ⊆ (𝑆 ∘ 𝑅) \ (𝑇 ∘ 𝑅).

Incorrect Proof (HTPI p. 190). Suppose (𝑎, 𝑐) ∈ (𝑆 \ 𝑇) ∘ 𝑅. Then we can choose some 𝑏 ∈ 𝐵
such that (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑆 \ 𝑇 , so (𝑏, 𝑐) ∈ 𝑆 and (𝑏, 𝑐) ∉ 𝑇 . Since (𝑎, 𝑏) ∈ 𝑅
and (𝑏, 𝑐) ∈ 𝑆, (𝑎, 𝑐) ∈ 𝑆 ∘ 𝑅. Similarly, since (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∉ 𝑇 , (𝑎, 𝑐) ∉ 𝑇 ∘ 𝑅.
Therefore (𝑎, 𝑐) ∈ (𝑆 ∘ 𝑅) \ (𝑇 ∘ 𝑅). Since (𝑎, 𝑐) was arbitrary, this shows that (𝑆 \ 𝑇) ∘ 𝑅 ⊆
(𝑆 ∘ 𝑅) \ (𝑇 ∘ 𝑅).

Find the mistake in the proof by attempting to write the proof in Lean:

--You won't be able to complete this proof
theorem Exercise_4_2_12b {A B C : Type}

(R : Set (A × B)) (S T : Set (B × C)) :
comp (S \ T) R ⊆ (comp S R) \ (comp T R) := sorry

6. Is the following theorem correct? Try to prove it in Lean. If you can’t prove it, see if you
can find a counterexample.

--You might not be able to complete this proof
theorem Exercise_4_2_14c {A B C : Type}

(R : Set (A × B)) (S T : Set (B × C)) :
comp (S ∩ T) R = (comp S R) ∩ (comp T R) := sorry

7. Is the following theorem correct? Try to prove it in Lean. If you can’t prove it, see if you
can find a counterexample.

--You might not be able to complete this proof
theorem Exercise_4_2_14d {A B C : Type}

(R : Set (A × B)) (S T : Set (B × C)) :

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

119

https://doi.org/10.1017/9781108539890

4.3. More About Relations

comp (S ∪ T) R = (comp S R) ∪ (comp T R) := sorry

4.3. More About Relations

Section 4.3 of HTPI introduces new notation for working with relations. If 𝑅 ⊆ 𝐴 × 𝐵,
𝑎 ∈ 𝐴, and 𝑏 ∈ 𝐵, then HTPI introduces the notation 𝑎𝑅𝑏 as an alternative way of saying
(𝑎, 𝑏) ∈ 𝑅.

The notation we will use in Lean is slightly different. Corresponding to the notation 𝑎𝑅𝑏 in
HTPI, in Lean we will use the notation R a b. And we cannot use this notation when R has
type Set (A × B). Rather, we will need to introduce a new type for the variable R in the
notation R a b. The name we will use for this new type is Rel A B. Thus, if R has type Rel A B,
a has type A, and b has type B, then R a b is a proposition. This should remind you of the way
predicates work in Lean. If we have P : Pred A, then we think of P as representing a property
that an object of type A might have, and if we also have a : A, then P a is the proposition
asserting that a has the property represented by P. Similarly, if we have R : Rel A B, then we
can think of R as representing a relationship that might hold between an object of type A and
an object of type B, and if we also have a : A and b : B, then R a b is the proposition asserting
that the relationship represented by R holds between a and b.

Notice that in HTPI, the same variable 𝑅 is used in both the notation 𝑎𝑅𝑏 and (𝑎, 𝑏) ∈ 𝑅.
But in Lean, the notation R a b is used when R has type Rel A B, and the notation (a, b) ∈
R is used when R has type Set (A × B). The types Rel A B and Set (A × B) are different, so
we cannot use the same variable R in the two notations. However, there is a correspondence
between the two types. Suppose R has type Rel A B. If we let R' denote the set of all ordered
pairs (a, b) : A × B such that the proposition R a b is true, then R' has type Set (A × B).
And there is then a simple relationship between R and R': for any objects a : A and b : B, the
propositions R a b and (a, b) ∈ R' are equivalent. For our work in Lean, we will say that R
is a relation from A to B, and R' is the extension of R.

We can define the extension of a relation, and state the correspondence between a relation and
its extension, in Lean as follows:

def extension {A B : Type} (R : Rel A B) : Set (A × B) :=
{(a, b) : A × B | R a b}

theorem ext_def {A B : Type} (R : Rel A B) (a : A) (b : B) :
(a, b) ∈ extension R ↔ R a b := by rfl

The rest of Chapter 4 of HTPI focuses on relations from a set to itself; in Lean, the corre-
sponding idea is a relation from a type to itself. If A is any type and R has type Rel A A, then
we will say that R is a binary relation on A. The notation BinRel A denotes the type of binary

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

120

https://doi.org/10.1017/9781108539890

4.3. More About Relations

relations on A. In other words, BinRel A is just an abbreviation for Rel A A. If R is a binary
relation on A, then we say that R is reflexive if for every x of type A, R x x holds. It is symmetric
if for all x and y of type A, if R x y then R y x. And it is transitive if for all x, y, and z of type
A, if R x y and R y z then R x z. Of course, we can tell Lean about these definitions, which
correspond to Definition 4.3.2 in HTPI :

def reflexive {A : Type} (R : BinRel A) : Prop :=
∀ (x : A), R x x

def symmetric {A : Type} (R : BinRel A) : Prop :=
∀ (x y : A), R x y → R y x

def transitive {A : Type} (R : BinRel A) : Prop :=
∀ (x y z : A), R x y → R y z → R x z

Once again, we refer you to HTPI to see examples of these concepts, and we focus here on
proving theorems about these concepts in Lean. The main theorem about these concepts in
Section 4.3 of HTPI is Theorem 4.3.4. Here is what it says (HTPI p. 196):

Theorem 4.3.4. Suppose 𝑅 is a relation on a set 𝐴.

1. 𝑅 is reflexive iff {(𝑥, 𝑦) ∈ 𝐴 × 𝐴 ∣ 𝑥 = 𝑦} ⊆ 𝑅.
2. 𝑅 is symmetric iff 𝑅 = 𝑅−1.
3. 𝑅 is transitive iff 𝑅 ∘ 𝑅 ⊆ 𝑅.

We can prove corresponding statements in Lean, but we’ll have to be careful to distinguish
between the types BinRel A and Set (A × A). In HTPI, each of the three statements in the
theorem uses the same letter 𝑅 on both sides of the “iff”, but we can’t write the statements that
way in Lean. In each statement, the part before “iff” uses a concept that was defined for objects
of type BinRel A, whereas the part after “iff” uses concepts that only make sense for objects
of type Set (A × A). So we’ll have to rephrase the statements by using the correspondence
between a relation of type BinRel A and its extension, which has type Set (A × A). Here’s the
Lean theorem corresponding to statement 2 of Theorem 4.3.4:

theorem Theorem_4_3_4_2 {A : Type} (R : BinRel A) :
symmetric R ↔ extension R = inv (extension R) := by

apply Iff.intro
· -- (→)

assume h1 : symmetric R
define at h1 --h1 : ∀ (x y : A), R x y → R y x
apply Set.ext
fix (a, b) : A × A
show (a, b) ∈ extension R ↔ (a, b) ∈ inv (extension R) from

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

121

https://doi.org/10.1017/9781108539890

4.3. More About Relations

calc (a, b) ∈ extension R
_ ↔ R a b := by rfl
_ ↔ R b a := Iff.intro (h1 a b) (h1 b a)
_ ↔ (a, b) ∈ inv (extension R) := by rfl

done
· -- (←)

assume h1 : extension R = inv (extension R)
define --Goal : ∀ (x y : A), R x y → R y x
fix a : A; fix b : A
assume h2 : R a b --Goal : R b a
rewrite [←ext_def R, h1, inv_def, ext_def] at h2
show R b a from h2
done

done

Note that near the end of the proof, we assume h2 : R a b, and our goal is R b a. We convert
R a b to R b a by a sequence of rewrites. Applying the right-to-left direction of the theorem
ext_def R a b converts R a b to (a, b) ∈ extension R. Then rewriting with h1 converts this
to (a, b) ∈ inv (extension R), using inv_def (extension R) b a converts this to (b, a) ∈
extension R, and finally ext_def R b a produces R b a. Usually we can leave out the arguments
when we use a theorem as a rewriting rule, and Lean will figure them out for itself. But in
this case, if you try using ←ext_def as the first rewriting rule, you will see that Lean is unable
to figure out that it should use the right-to-left direction of ext_def R a b. Supplying the first
argument turns out to be enough of a hint for Lean to figure out the rest. That’s why our first
rewriting rule is ←ext_def R.

We’ll leave the proofs of the other two statements in Theorem 4.3.4 as exercises for you.

For any types A and B, if we want to define a particular relation R from A to B, we can do it by
specifying, for any a : A and b : B, what proposition is represented by R a b. For example,
for any type A, we can define a relation elementhood A from A to Set A as follows:

def elementhood (A : Type) (a : A) (X : Set A) : Prop := a ∈ X

This definition says that if A is a type, a has type A, and X has type Set A, then elementhood A
a X is the proposition a ∈ X. Thus, if elementhood A is followed by objects of type A and Set A,
the result is a proposition, so elementhood A is functioning as a relation from A to Set A. For
example, elementhood Int is a relation from integers to sets of integers, and elementhood Int
6 {n : Int | ∃ (k : Int), n = 2 * k} is the (true) statement that 6 is an element of the set
of even integers. (You are asked to prove it in the exercises.)

We can also use this method to define an operation that reverses the process of forming the
extension of a relation. If R has type Set (A × B), then we define RelFromExt R to be the

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

122

https://doi.org/10.1017/9781108539890

4.3. More About Relations

relation whose extension is R. A few simple theorems, which follow directly from the definition,
clarify the meaning of RelFromExt R.

def RelFromExt {A B : Type}
(R : Set (A × B)) (a : A) (b : B) : Prop := (a, b) ∈ R

theorem RelFromExt_def {A B : Type}
(R : Set (A × B)) (a : A) (b : B) :
RelFromExt R a b ↔ (a, b) ∈ R := by rfl

example {A B : Type} (R : Rel A B) :
RelFromExt (extension R) = R := by rfl

example {A B : Type} (R : Set (A × B)) :
extension (RelFromExt R) = R := by rfl

Exercises

1. example :
elementhood Int 6 {n : Int | ∃ (k : Int), n = 2 * k} := sorry

2. theorem Theorem_4_3_4_1 {A : Type} (R : BinRel A) :
reflexive R ↔ {(x, y) : A × A | x = y} ⊆ extension R := sorry

3. theorem Theorem_4_3_4_3 {A : Type} (R : BinRel A) :
transitive R ↔
comp (extension R) (extension R) ⊆ extension R := sorry

4. theorem Exercise_4_3_12a {A : Type} (R : BinRel A) (h1 : reflexive R) :
reflexive (RelFromExt (inv (extension R))) := sorry

5. theorem Exercise_4_3_12c {A : Type} (R : BinRel A) (h1 : transitive R) :
transitive (RelFromExt (inv (extension R))) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

123

https://doi.org/10.1017/9781108539890

4.4. Ordering Relations

6. theorem Exercise_4_3_18 {A : Type}
(R S : BinRel A) (h1 : transitive R) (h2 : transitive S)
(h3 : comp (extension S) (extension R) ⊆
comp (extension R) (extension S)) :

transitive (RelFromExt (comp (extension R) (extension S))) := sorry

7. theorem Exercise_4_3_20 {A : Type} (R : BinRel A) (S : BinRel (Set A))
(h : ∀ (X Y : Set A), S X Y ↔ X ≠ ∅ ∧ Y ≠ ∅ ∧
∀ (x y : A), x ∈ X → y ∈ Y → R x y) :
transitive R → transitive S := sorry

In the next three exercises, determine whether or not the theorem is correct.

8. --You might not be able to complete this proof
theorem Exercise_4_3_13b {A : Type}

(R1 R2 : BinRel A) (h1 : symmetric R1) (h2 : symmetric R2) :
symmetric (RelFromExt ((extension R1) ∪ (extension R2))) := sorry

9. --You might not be able to complete this proof
theorem Exercise_4_3_13c {A : Type}

(R1 R2 : BinRel A) (h1 : transitive R1) (h2 : transitive R2) :
transitive (RelFromExt ((extension R1) ∪ (extension R2))) := sorry

10. --You might not be able to complete this proof
theorem Exercise_4_3_19 {A : Type} (R : BinRel A) (S : BinRel (Set A))

(h : ∀ (X Y : Set A), S X Y ↔ ∃ (x y : A), x ∈ X ∧ y ∈ Y ∧ R x y) :
transitive R → transitive S := sorry

4.4. Ordering Relations

Section 4.4 of HTPI begins by defining several new concepts about binary relations. Here are
the definitions, written in Lean:

def antisymmetric {A : Type} (R : BinRel A) : Prop :=
∀ (x y : A), R x y → R y x → x = y

def partial_order {A : Type} (R : BinRel A) : Prop :=

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

124

https://doi.org/10.1017/9781108539890

4.4. Ordering Relations

reflexive R ∧ transitive R ∧ antisymmetric R

def total_order {A : Type} (R : BinRel A) : Prop :=
partial_order R ∧ ∀ (x y : A), R x y ∨ R y x

These definitions say that if R is a binary relation on A, then R is antisymmetric if R x y and
R y x cannot both be true unless x = y. R is a partial order on A—or just a partial order,
if A is clear from context—if it is reflexive, transitive, and antisymmetric. And R is a total
order on A if it is a partial order and also, for any x and y of type A, either R x y or R y x.
Note that, since Lean groups the connective ∧ to the right, partial_order R means reflexive
R ∧ (transitive R ∧ antisymmetric R), and therefore if h is a proof of partial_order R, then
h.left is a proof of reflexive R, h.right.left is a proof of transitive R, and h.right.right
is a proof of antisymmetric R.

Example 4.4.3 in HTPI gives several examples of partial orders and total orders. We’ll give
one of those examples here. For any type A, we define sub A to be the subset relation on sets
of objects of type A:

def sub (A : Type) (X Y : Set A) : Prop := X ⊆ Y

According to this definition, sub A is a binary relation on Set A, and for any two sets X and Y
of type Set A, sub A X Y is the proposition X ⊆ Y. We will leave it as an exercise for you to
prove that sub A is a partial order on the type Set A.

Notice that X ⊆ Y could be thought of as expressing a sense in which Y is “at least as large as”
X. Often, if R is a partial order on A and a and b have type A, then R a b can be thought of as
meaning that b is in some sense “at least as large as” a. Many of the concepts we study for
partial and total orders are motivated by this interpretation of R.

For example, if R is a partial order on A, B has type Set A, and b has type A, then we say that
b is an R-smallest element of B if it is an element of B, and every element of B is at least as
large as b, according to this interpretation of the ordering R. We say that b is an R-minimal
element of B if it is an element of B, and there is no other element of B that is smaller than b,
according to the ordering R. We can state these precisely as definitions in Lean:

def smallestElt {A : Type} (R : BinRel A) (b : A) (B : Set A) : Prop :=
b ∈ B ∧ ∀ x ∈ B, R b x

def minimalElt {A : Type} (R : BinRel A) (b : A) (B : Set A) : Prop :=
b ∈ B ∧ ¬∃ x ∈ B, R x b ∧ x ≠ b

Notice that, as in HTPI, in Lean we can write ∀ x ∈ B, P x as an abbreviation for ∀ (x : A),
x ∈ B → P x, and ∃ x ∈ B, P x as an abbreviation for ∃ (x : A), x ∈ B ∧ P x. According

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

125

https://doi.org/10.1017/9781108539890

4.4. Ordering Relations

to these definitions, smallestElt R b B is the proposition that b is an R-smallest element of B,
and minimalElt R b B means that b is an R-minimal element of B.

Theorem 4.4.6 in HTPI asserts three statements about these concepts. We’ll prove the second
and third, and leave the first as an exercise for you. The first statement in Theorem 4.4.6
says that if B has an R-smallest element, then that R-smallest element is unique. Thus, we can
talk about the R-smallest element of B rather than an R-smallest element. The second says
that if b is the R-smallest element of B, then it is also an R-minimal element, and it is the only
R-minimal element. Here is how you might start the proof. (Although Lean sometimes uses
bounded quantifiers as abbreviations in the Infoview, we have written out the unabbreviated
statements in the comments, to make the logic of some steps easier to follow.)

theorem Theorem_4_4_6_2 {A : Type} (R : BinRel A) (B : Set A) (b : A)
(h1 : partial_order R) (h2 : smallestElt R b B) :
minimalElt R b B ∧ ∀ (c : A), minimalElt R c B → b = c := by

define at h1 --h1 : reflexive R ∧ transitive R ∧ antisymmetric R
define at h2 --h2 : b ∈ B ∧ ∀ (x : A), x ∈ B → R b x
apply And.intro
· -- Proof that b is minimal

define --Goal : b ∈ B ∧ ¬∃ (x : A), x ∈ B ∧ R x b ∧ x ≠ b
apply And.intro h2.left
quant_neg --Goal : ∀ (x : A), ¬(x ∈ B ∧ R x b ∧ x ≠ b)
::::::::
demorgan

::
:
:::::
¬(x

::
∈

::
B

::
∧

::
R

::
x
::
b
::
∧
::
x
::
≠
:::
b)

done
· -- Proof that b is only minimal element

::::
done

done

When the goal is ∀ (x : A), ¬(x ∈ B ∧ R x b ∧ x ≠ b), it is tempting to apply the demorgan
tactic to ¬(x ∈ B ∧ R x b ∧ x ≠ b), but unfortunately this generates an error in Lean:
unknown identifier 'x'. The problem is that x is not defined in the tactic state, so without
the quantifier ∀ (x : A) in front of it, ¬(x ∈ B ∧ R x b ∧ x ≠ b) doesn’t mean anything to
Lean. The solution to the problem is to deal with the universal quantifier first by introducing
an arbitrary x of type A. Once x has been introduced, we can apply the demorgan tactic.

theorem Theorem_4_4_6_2 {A : Type} (R : BinRel A) (B : Set A) (b : A)
(h1 : partial_order R) (h2 : smallestElt R b B) :
minimalElt R b B ∧ ∀ (c : A), minimalElt R c B → b = c := by

define at h1 --h1 : reflexive R ∧ transitive R ∧ antisymmetric R
define at h2 --h2 : b ∈ B ∧ ∀ (x : A), x ∈ B → R b x
apply And.intro
· -- Proof that b is minimal

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

126

https://doi.org/10.1017/9781108539890

4.4. Ordering Relations

define --Goal : b ∈ B ∧ ¬∃ (x : A), x ∈ B ∧ R x b ∧ x ≠ b
apply And.intro h2.left
quant_neg --Goal : ∀ (x : A), ¬(x ∈ B ∧ R x b ∧ x ≠ b)
fix x : A
demorgan --Goal : ¬x ∈ B ∨ ¬(R x b ∧ x ≠ b)
or_right with h3 --h3 : x ∈ B; Goal : ¬(R x b ∧ x ≠ b)
demorgan --Goal : ¬R x b ∨ x = b
or_right with h4 --h4 : R x b; Goal : x = b
have h5 : R b x := h2.right x h3
have h6 : antisymmetric R := h1.right.right
define at h6 --h6 : ∀ (x y : A), R x y → R y x → x = y
show x = b from h6 x b h4 h5
done

· -- Proof that b is only minimal element
fix c : A
assume h3 : minimalElt R c B
define at h3 --h3 : c ∈ B ∧ ¬∃ (x : A), x ∈ B ∧ R x c ∧ x ≠ c
contradict h3.right with h4

--h4 : ¬b = c; Goal : ∃ (x : A), x ∈ B ∧ R x c ∧ x ≠ c
have h5 : R b c := h2.right c h3.left
show ∃ (x : A), x ∈ B ∧ R x c ∧ x ≠ c from

Exists.intro b (And.intro h2.left (And.intro h5 h4))
done

done

Finally, the third statement in Theorem 4.4.6 says that if R is a total order, then any R-
minimal element of a set B must be the R-smallest element of B. The beginning of the proof is
straightforward:

theorem Theorem_4_4_6_3 {A : Type} (R : BinRel A) (B : Set A) (b : A)
(h1 : total_order R) (h2 : minimalElt R b B) : smallestElt R b B := by

define at h1 --h1 : partial_order R ∧ ∀ (x y : A), R x y ∨ R y x
define at h2 --h2 : b ∈ B ∧ ¬∃ (x : A), x ∈ B ∧ R x b ∧ x ≠ b
define --Goal : b ∈ B ∧ ∀ (x : A), x ∈ B → R b x
apply And.intro h2.left --Goal : ∀ (x : A), x ∈ B → R b x
fix x : A
assume h3 : x ∈ B --Goal : R b x
::::
done

Surprisingly, at this point it is difficult to find a way to reach the goal R b x. See HTPI for
an explanation of why it turns out to be helpful to split the proof into two cases, depending
on whether or not x = b. Of course, we use the by_cases tactic for this.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

127

https://doi.org/10.1017/9781108539890

4.4. Ordering Relations

theorem Theorem_4_4_6_3 {A : Type} (R : BinRel A) (B : Set A) (b : A)
(h1 : total_order R) (h2 : minimalElt R b B) : smallestElt R b B := by

define at h1 --h1 : partial_order R ∧ ∀ (x y : A), R x y ∨ R y x
define at h2 --h2 : b ∈ B ∧ ¬∃ (x : A), x ∈ B ∧ R x b ∧ x ≠ b
define --Goal : b ∈ B ∧ ∀ (x : A), x ∈ B → R b x
apply And.intro h2.left --Goal : ∀ (x : A), x ∈ B → R b x
fix x : A
assume h3 : x ∈ B --Goal : R b x
by_cases h4 : x = b
· -- Case 1. h4 : x = b

rewrite [h4] --Goal : R b b
have h5 : partial_order R := h1.left
define at h5
have h6 : reflexive R := h5.left
define at h6
show R b b from h6 b
done

· -- Case 2. h4 : x ≠ b
have h5 : ∀ (x y : A), R x y ∨ R y x := h1.right
have h6 : R x b ∨ R b x := h5 x b
have h7 : ¬R x b := by

contradict h2.right with h8
show ∃ (x : A), x ∈ B ∧ R x b ∧ x ≠ b from

Exists.intro x (And.intro h3 (And.intro h8 h4))
done

disj_syll h6 h7
show R b x from h6
done

done

Imitating the definitions above, you should be able to formulate definitions of R-largest and
R-maximal elements. Section 4.4 of HTPI defines four more terms: upper bound, lower bound,
least upper bound, and greatest lower bound. We will discuss upper bounds and least upper
bounds, and leave lower bounds and greatest lower bounds for you to figure out on your own.

If R is a partial order on A, B has type Set A, and a has type A, then a is called an upper bound
for B if it is at least as large as every element of B. If it is the smallest element of the set of
upper bounds, then it is called the least upper bound of B. The phrase “least upper bound” is
often abbreviated “lub”. Here are these definitions, written in Lean:

def upperBd {A : Type} (R : BinRel A) (a : A) (B : Set A) : Prop :=
∀ x ∈ B, R x a

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

128

https://doi.org/10.1017/9781108539890

4.4. Ordering Relations

def lub {A : Type} (R : BinRel A) (a : A) (B : Set A) : Prop :=
smallestElt R a {c : A | upperBd R c B}

As usual, we will let you consult HTPI for examples of these concepts. But we will mention
one example: If A is a type and F has type Set (Set A)—that is, F is a set whose elements are
sets of objects of type A—then the least upper bound of F, with respect to the partial order
sub A, is ⋃₀ F. We leave the proof of this fact as an exercise.

Exercises

1. theorem Example_4_4_3_1 {A : Type} : partial_order (sub A) := sorry

2. theorem Theorem_4_4_6_1 {A : Type} (R : BinRel A) (B : Set A) (b : A)
(h1 : partial_order R) (h2 : smallestElt R b B) :
∀ (c : A), smallestElt R c B → b = c := sorry

3. --If F is a set of sets, then ⋃₀ F is the lub of F in the subset ordering
theorem Theorem_4_4_11 {A : Type} (F : Set (Set A)) :

lub (sub A) (⋃₀ F) F := sorry

4. theorem Exercise_4_4_8 {A B : Type} (R : BinRel A) (S : BinRel B)
(T : BinRel (A × B)) (h1 : partial_order R) (h2 : partial_order S)
(h3 : ∀ (a a' : A) (b b' : B),
T (a, b) (a', b') ↔ R a a' ∧ S b b') :

partial_order T := sorry

5. theorem Exercise_4_4_9_part {A B : Type} (R : BinRel A) (S : BinRel B)
(L : BinRel (A × B)) (h1 : total_order R) (h2 : total_order S)
(h3 : ∀ (a a' : A) (b b' : B),
L (a, b) (a', b') ↔ R a a' ∧ (a = a' → S b b')) :

∀ (a a' : A) (b b' : B),
L (a, b) (a', b') ∨ L (a', b') (a, b) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

129

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

6. theorem Exercise_4_4_15a {A : Type}
(R1 R2 : BinRel A) (B : Set A) (b : A)
(h1 : partial_order R1) (h2 : partial_order R2)
(h3 : extension R1 ⊆ extension R2) :
smallestElt R1 b B → smallestElt R2 b B := sorry

7. theorem Exercise_4_4_15b {A : Type}
(R1 R2 : BinRel A) (B : Set A) (b : A)
(h1 : partial_order R1) (h2 : partial_order R2)
(h3 : extension R1 ⊆ extension R2) :
minimalElt R2 b B → minimalElt R1 b B := sorry

8. theorem Exercise_4_4_18a {A : Type}
(R : BinRel A) (B1 B2 : Set A) (h1 : partial_order R)
(h2 : ∀ x ∈ B1, ∃ y ∈ B2, R x y) (h3 : ∀ x ∈ B2, ∃ y ∈ B1, R x y) :
∀ (x : A), upperBd R x B1 ↔ upperBd R x B2 := sorry

9. theorem Exercise_4_4_22 {A : Type}
(R : BinRel A) (B1 B2 : Set A) (x1 x2 : A)
(h1 : partial_order R) (h2 : lub R x1 B1) (h3 : lub R x2 B2) :
B1 ⊆ B2 → R x1 x2 := sorry

10. theorem Exercise_4_4_24 {A : Type} (R : Set (A × A)) :
smallestElt (sub (A × A)) (R ∪ (inv R))
{T : Set (A × A) | R ⊆ T ∧ symmetric (RelFromExt T)} := sorry

4.5. Equivalence Relations

Chapter 4 of HTPI concludes with the study of one more important combination of properties
that a relation might have. A binary relation 𝑅 on a set 𝐴 is called an equivalence relation if
it is reflexive, symmetric, and transitive. If 𝑥 ∈ 𝐴, then the equivalence class of 𝑥 with respect
to 𝑅 is the set of all 𝑦 ∈ 𝐴 such that 𝑦𝑅𝑥. In HTPI, this equivalence class is denoted [𝑥]𝑅, so
we have

[𝑥]𝑅 = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥}.
The set whose elements are all of these equivalence classes is called 𝐴 mod 𝑅. It is written
𝐴/𝑅, so

𝐴/𝑅 = {[𝑥]𝑅 ∣ 𝑥 ∈ 𝐴}.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

130

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

Note that 𝐴/𝑅 is a set whose elements are sets: for each 𝑥 ∈ 𝐴, [𝑥]𝑅 is a subset of 𝐴, and
[𝑥]𝑅 ∈ 𝐴/𝑅.

To define these concepts in Lean, we write:

def equiv_rel {A : Type} (R : BinRel A) : Prop :=
reflexive R ∧ symmetric R ∧ transitive R

def equivClass {A : Type} (R : BinRel A) (x : A) : Set A :=
{y : A | R y x}

def mod (A : Type) (R : BinRel A) : Set (Set A) :=
{equivClass R x | x : A}

Thus, equiv_rel R is the proposition that R is an equivalence relation, equivClass R x is the
equivalence class of x with respect to R, and mod A R is A mod R. Note that equivClass R x has
type Set A, while mod A R has type Set (Set A). The definition of mod A R is shorthand for {X
: Set A | ∃ (x : A), equivClass R x = X}.

HTPI gives several examples of equivalence relations, and these examples illustrate that equiv-
alence classes always have certain properties. The most important of these are that each
equivalence class is a nonempty set, the equivalence classes do not overlap, and their union is
all of A. We say that the equivalence classes form a partition of A. To state and prove these
properties in Lean we will need some definitions. We start with these:

def empty {A : Type} (X : Set A) : Prop := ¬∃ (x : A), x ∈ X

def pairwise_disjoint {A : Type} (F : Set (Set A)) : Prop :=
∀ X ∈ F, ∀ Y ∈ F, X ≠ Y → empty (X ∩ Y)

To say that a set X is empty, we could write X = ∅, but it is more convenient to have a
statement that says more explicitly what it means for a set to be empty. Thus, we have
defined empty X to be the proposition saying that X has no elements. If F has type Set (Set
A), then pairwise_disjoint F is the proposition that no two distinct elements of F have any
element in common—in other words, the elements of F do not overlap. We can now give the
precise definition of a partition:

def partition {A : Type} (F : Set (Set A)) : Prop :=
(∀ (x : A), x ∈ ⋃₀ F) ∧ pairwise_disjoint F ∧ ∀ X ∈ F, ¬empty X

The main theorem about equivalence relations in HTPI is Theorem 4.5.4, which says that mod
A R is a partition of A. The proof of this theorem is hard enough that HTPI proves two facts
about equivalence classes first. A fact that is proven just for the purpose of using it to prove

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

131

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

something else is often called a lemma. We can use this term in Lean as well. Here is the first
part of Lemma 4.5.5 from HTPI

lemma Lemma_4_5_5_1 {A : Type} (R : BinRel A) (h : equiv_rel R) :
∀ (x : A), x ∈ equivClass R x := by

fix x : A
define --Goal : R x x
define at h --h : reflexive R ∧ symmetric R ∧ transitive R
have Rref : reflexive R := h.left
show R x x from Rref x
done

The command #check @Lemma_4_5_5_1 produces the result

@Lemma_4_5_5_1 : ∀ {A : Type} (R : BinRel A),
equiv_rel R → ∀ (x : A), x ∈ equivClass R x

Thus, if we have R : BinRel A, h : equiv_rel R, and x : A, then Lemma_4_5_5_1 R h x is a
proof of x ∈ equivClass R x. We will use this at the end of the proof of our next lemma:

lemma Lemma_4_5_5_2 {A : Type} (R : BinRel A) (h : equiv_rel R) :
∀ (x y : A), y ∈ equivClass R x ↔

equivClass R y = equivClass R x := by
have Rsymm : symmetric R := h.right.left
have Rtrans : transitive R := h.right.right
fix x : A; fix y : A
apply Iff.intro
· -- (→)

assume h2 :
y ∈ equivClass R x --Goal : equivClass R y = equivClass R x

define at h2 --h2 : R y x
apply Set.ext
fix z : A
apply Iff.intro
· -- Proof that z ∈ equivClass R y → z ∈ equivClass R x

assume h3 : z ∈ equivClass R y
define --Goal : R z x
define at h3 --h3 : R z y
show R z x from Rtrans z y x h3 h2
done

· -- Proof that z ∈ equivClass R x → z ∈ equivClass R y
assume h3 : z ∈ equivClass R x
define --Goal : R z y

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

132

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

define at h3 --h3 : R z x
have h4 : R x y := Rsymm y x h2
show R z y from Rtrans z x y h3 h4
done

done
· -- (←)

assume h2 :
equivClass R y = equivClass R x --Goal : y ∈ equivClass R x

rewrite [←h2] --Goal : y ∈ equivClass R y
show y ∈ equivClass R y from Lemma_4_5_5_1 R h y
done

done

The definition of “partition” has three parts, so to prove Theorem 4.5.4 we will have to prove
three statements. It will make the proof easier to read if we prove the three statements
separately.

lemma Theorem_4_5_4_part_1 {A : Type} (R : BinRel A) (h : equiv_rel R) :
∀ (x : A), x ∈ ⋃₀ (mod A R) := by

fix x : A
define --Goal : ∃ (t : Set A), t ∈ mod A R ∧ x ∈ t
apply Exists.intro (equivClass R x)
apply And.intro _ (Lemma_4_5_5_1 R h x)

--Goal : equivClass R x ∈ mod A R
define --Goal : ∃ (x_1 : A), equivClass R x_1 = equivClass R x
apply Exists.intro x
rfl
done

lemma Theorem_4_5_4_part_2 {A : Type} (R : BinRel A) (h : equiv_rel R) :
pairwise_disjoint (mod A R) := by

define
fix X : Set A
assume h2 : X ∈ mod A R
fix Y : Set A
assume h3 : Y ∈ mod A R --Goal : X ≠ Y → empty (X ∩ Y)
define at h2; define at h3
obtain (x : A) (h4 : equivClass R x = X) from h2
obtain (y : A) (h5 : equivClass R y = Y) from h3
contrapos
assume h6 : ∃ (x : A), x ∈ X ∩ Y --Goal : X = Y
obtain (z : A) (h7 : z ∈ X ∩ Y) from h6

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

133

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

define at h7
rewrite [←h4, ←h5] at h7 --h7 : z ∈ equivClass R x ∧ z ∈ equivClass R y
have h8 : equivClass R z = equivClass R x :=

(Lemma_4_5_5_2 R h x z).ltr h7.left
have h9 : equivClass R z = equivClass R y :=

(Lemma_4_5_5_2 R h y z).ltr h7.right
show X = Y from

calc X
_ = equivClass R x := h4.symm
_ = equivClass R z := h8.symm
_ = equivClass R y := h9
_ = Y := h5

done

lemma Theorem_4_5_4_part_3 {A : Type} (R : BinRel A) (h : equiv_rel R) :
∀ X ∈ mod A R, ¬empty X := by

fix X : Set A
assume h2 : X ∈ mod A R --Goal : ¬empty X
define; double_neg --Goal : ∃ (x : A), x ∈ X
define at h2 --h2 : ∃ (x : A), equivClass R x = X
obtain (x : A) (h3 : equivClass R x = X) from h2
rewrite [←h3]
show ∃ (x_1 : A), x_1 ∈ equivClass R x from

Exists.intro x (Lemma_4_5_5_1 R h x)
done

It’s easy now to put everything together to prove Theorem 4.5.4.

theorem Theorem_4_5_4 {A : Type} (R : BinRel A) (h : equiv_rel R) :
partition (mod A R) := And.intro (Theorem_4_5_4_part_1 R h)

(And.intro (Theorem_4_5_4_part_2 R h) (Theorem_4_5_4_part_3 R h))

Theorem 4.5.4 shows that an equivalence relation on A determines a partition of A, namely mod
A R. Our next project will be to prove Theorem 4.5.6 in HTPI, which says that every partition
of A arises in this way; that is, every partition is mod A R for some equivalence relation R. To
prove this, we must show how to use a partition F to define an equivalence relation R for which
mod A R = F. The proof in HTPI defines the required equivalence relation R as a set of ordered
pairs, but in Lean we will need to define it instead as a binary relation on A. Translating
HTPI ’s set-theoretic definition into Lean’s notation for binary relations leads to the following
definition:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

134

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

def EqRelFromPart {A : Type} (F : Set (Set A)) (x y : A) : Prop :=
∃ X ∈ F, x ∈ X ∧ y ∈ X

In other words, EqRelFromPart F is the binary relation on A that is true of any two objects x
and y of type A if and only if x and y belong to the same set in F. Our plan now is to show
that if F is a partition of A, then EqRelFromPart F is an equivalence relation on A, and mod A
(EqRelFromPart F) = F.

Once again, HTPI breaks the proof up by proving some lemmas first, and we will find it
convenient to break the proof into even smaller pieces. We will leave the proofs of most of
these lemmas as exercises for you.

lemma overlap_implies_equal {A : Type}
(F : Set (Set A)) (h : partition F) :
∀ X ∈ F, ∀ Y ∈ F, ∀ (x : A), x ∈ X → x ∈ Y → X = Y := sorry

lemma Lemma_4_5_7_ref {A : Type} (F : Set (Set A)) (h : partition F):
reflexive (EqRelFromPart F) := sorry

lemma Lemma_4_5_7_symm {A : Type} (F : Set (Set A)) (h : partition F):
symmetric (EqRelFromPart F) := sorry

lemma Lemma_4_5_7_trans {A : Type} (F : Set (Set A)) (h : partition F):
transitive (EqRelFromPart F) := sorry

We can now put these pieces together to prove Lemma 4.5.7 in HTPI :

lemma Lemma_4_5_7 {A : Type} (F : Set (Set A)) (h : partition F) :
equiv_rel (EqRelFromPart F) := And.intro (Lemma_4_5_7_ref F h)

(And.intro (Lemma_4_5_7_symm F h) (Lemma_4_5_7_trans F h))

We need one more lemma before we can prove Theorem 4.5.6:

lemma Lemma_4_5_8 {A : Type} (F : Set (Set A)) (h : partition F) :
∀ X ∈ F, ∀ x ∈ X, equivClass (EqRelFromPart F) x = X := sorry

We are finally now ready to address Theorem 4.5.6. Here is the statement of the theorem:

theorem Theorem_4_5_6 {A : Type} (F : Set (Set A)) (h: partition F) :
∃ (R : BinRel A), equiv_rel R ∧ mod A R = F

Of course, the relation R that we will use to prove the theorem is EqRelFromPart F, so we could
start the proof with the tactic apply Exists.intro (EqRelFromPart F). But this means that

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

135

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

the rest of the proof will involve many statements about the relation EqRelFromPart F. When
a complicated object appears multiple times in a proof, it can make the proof a little easier to
read if we give that object a name. We can do that by using a new tactic. The tactic set R :
BinRel A := EqRelFromPart F introduces the new variable R into the tactic state. The variable
R has type BinRel A, and it is definitionally equal to EqRelFromPart F. That means that, when
necessary, Lean will fill in this definition of R. For example, one of our first steps will be to
apply Lemma_4_5_7 to F and h. The conclusion of that lemma is equiv_rel (EqRelFromPart F),
but Lean will recognize this as meaning the same thing as equiv_rel R. Here is the proof of
the theorem:

theorem Theorem_4_5_6 {A : Type} (F : Set (Set A)) (h: partition F) :
∃ (R : BinRel A), equiv_rel R ∧ mod A R = F := by

set R : BinRel A := EqRelFromPart F
apply Exists.intro R --Goal : equiv_rel R ∧ mod A R = F
apply And.intro (Lemma_4_5_7 F h) --Goal : mod A R = F
apply Set.ext
fix X : Set A --Goal : X ∈ mod A R ↔ X ∈ F
apply Iff.intro
· -- (→)

assume h2 : X ∈ mod A R --Goal : X ∈ F
define at h2 --h2 : ∃ (x : A), equivClass R x = X
obtain (x : A) (h3 : equivClass R x = X) from h2
have h4 : x ∈ ⋃₀ F := h.left x
define at h4
obtain (Y : Set A) (h5 : Y ∈ F ∧ x ∈ Y) from h4
have h6 : equivClass R x = Y :=

Lemma_4_5_8 F h Y h5.left x h5.right
rewrite [←h3, h6]
show Y ∈ F from h5.left
done

· -- (←)
assume h2 : X ∈ F --Goal : X ∈ mod A R
have h3 : ¬empty X := h.right.right X h2
define at h3; double_neg at h3 --h3 : ∃ (x : A), x ∈ X
obtain (x : A) (h4 : x ∈ X) from h3
define --Goal : ∃ (x : A), equivClass R x = X
show ∃ (x : A), equivClass R x = X from

Exists.intro x (Lemma_4_5_8 F h X h2 x h4)
done

done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

136

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

Exercises

1. lemma overlap_implies_equal {A : Type}
(F : Set (Set A)) (h : partition F) :
∀ X ∈ F, ∀ Y ∈ F, ∀ (x : A), x ∈ X → x ∈ Y → X = Y := sorry

2. lemma Lemma_4_5_7_ref {A : Type} (F : Set (Set A)) (h : partition F) :
reflexive (EqRelFromPart F) := sorry

3. lemma Lemma_4_5_7_symm {A : Type} (F : Set (Set A)) (h : partition F) :
symmetric (EqRelFromPart F) := sorry

4. lemma Lemma_4_5_7_trans {A : Type} (F : Set (Set A)) (h : partition F) :
transitive (EqRelFromPart F) := sorry

5. lemma Lemma_4_5_8 {A : Type} (F : Set (Set A)) (h : partition F) :
∀ X ∈ F, ∀ x ∈ X, equivClass (EqRelFromPart F) x = X := sorry

6. lemma elt_mod_equiv_class_of_elt
{A : Type} (R : BinRel A) (h : equiv_rel R) :
∀ X ∈ mod A R, ∀ x ∈ X, equivClass R x = X := sorry

The next three exercises use the following definitions:

def dot {A : Type} (F G : Set (Set A)) : Set (Set A) :=
{Z : Set A | ¬empty Z ∧ ∃ X ∈ F, ∃ Y ∈ G, Z = X ∩ Y}

def conj {A : Type} (R S : BinRel A) (x y : A) : Prop :=
R x y ∧ S x y

7. theorem Exercise_4_5_20a {A : Type} (R S : BinRel A)
(h1 : equiv_rel R) (h2 : equiv_rel S) :
equiv_rel (conj R S) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

137

https://doi.org/10.1017/9781108539890

4.5. Equivalence Relations

8. theorem Exercise_4_5_20b {A : Type} (R S : BinRel A)
(h1 : equiv_rel R) (h2 : equiv_rel S) :
∀ (x : A), equivClass (conj R S) x =
equivClass R x ∩ equivClass S x := sorry

9. theorem Exercise_4_5_20c {A : Type} (R S : BinRel A)
(h1 : equiv_rel R) (h2 : equiv_rel S) :
mod A (conj R S) = dot (mod A R) (mod A S) := sorry

The next exercise uses the following definition:

def equiv_mod (m x y : Int) : Prop := m ∣ (x - y)

10. theorem Theorem_4_5_10 : ∀ (m : Int), equiv_rel (equiv_mod m) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

138

https://doi.org/10.1017/9781108539890

5 Functions

5.1. Functions

The first definition in Chapter 5 of HTPI says that if 𝐹 ⊆ 𝐴 × 𝐵, then 𝐹 is called a function
from 𝐴 to 𝐵 if for every 𝑎 ∈ 𝐴 there is exactly one 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝐹 . The notation
𝐹 ∶ 𝐴 → 𝐵 means that 𝐹 is a function from 𝐴 to 𝐵. If 𝐹 is a function from 𝐴 to 𝐵 and
𝑎 ∈ 𝐴, then HTPI introduces the notation 𝐹(𝑎) for the unique 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝐹 .
Thus, if 𝐹 ∶ 𝐴 → 𝐵, 𝑎 ∈ 𝐴, and 𝑏 ∈ 𝐵, then 𝐹(𝑎) = 𝑏 means the same thing as (𝑎, 𝑏) ∈ 𝐹 . We
sometimes think of 𝐹 as representing an operation that can be applied to an element 𝑎 of 𝐴
to produce a corresponding element 𝐹(𝑎) of 𝐵, and we call 𝐹(𝑎) the value of 𝐹 at 𝑎, or the
result of applying 𝐹 to 𝑎.
This might remind you of the situation we faced in Chapter 4. If 𝑅 ⊆ 𝐴 × 𝐵, 𝑎 ∈ 𝐴, and
𝑏 ∈ 𝐵, then Chapter 4 of HTPI uses the notation 𝑎𝑅𝑏 to mean the same thing as (𝑎, 𝑏) ∈ 𝑅.
But in Lean, we found it necessary to change this notation. Instead of using HTPI ’s notation
𝑎𝑅𝑏, we introduced the notation R a b, which we use when R has type Rel A B, a has type A,
and b has type B. (The notation (a, b) ∈ R, in contrast, can be used only when R has type
Set (A × B).) If R has type Rel A B, then we think of R as representing some relationship that
might hold between a and b, and R a b as the proposition saying that this relationship holds.
And although R is not a set of ordered pairs, there is a corresponding set, extension R, of type
Set (A × B), with the property that (a, b) ∈ extension R if and only if R a b.

We will take a similar approach to functions in this chapter. For any types A and B, we
introduce a new type A → B. If f has type A → B, then we think of f as representing some
operation that can be applied to an object of type A to produce a corresponding object of type
B. We will say that f is a function from A to B, and A is the domain of f. If a has type A,
then we write f a (with a space but no parentheses) for the result of applying the operation
represented by f to the object a. Thus, if we have f : A → B and a : A, then f a has type
B. As with relations, if f has type A → B, then f is not a set of ordered pairs. But there is a
corresponding set of ordered pairs, which we will call the graph of f, whose elements are the
ordered pairs (a, b) for which f a = b:

def graph {A B : Type} (f : A → B) : Set (A × B) :=
{(a, b) : A × B | f a = b}

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

139

https://doi.org/10.1017/9781108539890

5.1. Functions

theorem graph_def {A B : Type} (f : A → B) (a : A) (b : B) :
(a, b) ∈ graph f ↔ f a = b := by rfl

Every set of type Set (A × B) is the extension of some relation from A to B, but not every such
set is the graph of a function from A to B. To be the graph of a function, it must have the
property that was used to define functions in HTPI : each object of type A must be paired in
the set with exactly one object of type B. Let’s give this property a name:

def is_func_graph {A B : Type} (F : Set (A × B)) : Prop :=
∀ (x : A), ∃! (y : B), (x, y) ∈ F

And now we can say that the sets of type Set (A × B) that are graphs of functions from A to
B are precisely the ones that have the property is_func_graph:

theorem func_from_graph {A B : Type} (F : Set (A × B)) :
(∃ (f : A → B), graph f = F) ↔ is_func_graph F

We will ask you to prove the left-to-right direction of this theorem in the exercises. The proof
of the right-to-left direction in Lean is tricky; it requires an idea that we won’t introduce until
Section 8.2. We’ll give the proof then, but we’ll go ahead and use the theorem in this chapter
when we find it useful.

Section 5.1 of HTPI proves two theorems about functions. The first gives a convenient way of
proving that two functions are equal (HTPI p. 232):

Theorem 5.1.4. Suppose 𝑓 and 𝑔 are functions from 𝐴 to 𝐵. If ∀𝑎 ∈ 𝐴(𝑓(𝑎) = 𝑔(𝑎)), then
𝑓 = 𝑔.

The proof of this theorem in HTPI is based on the axiom of extensionality for sets. But in
Lean, functions aren’t sets of ordered pairs, so this method of proof won’t work. Fortunately,
Lean has a similar axiom of extensionality for functions. The axiom is called funext, and it
proves Theorem 5.1.4.

theorem Theorem_5_1_4 {A B : Type} (f g : A → B) :
(∀ (a : A), f a = g a) → f = g := funext

We saw previously that if we are trying to prove X = Y, where X and Y both have type Set U,
then often the best first step is the tactic apply Set.ext, which converts the goal to ∀ (x :
U), x ∈ X ↔ x ∈ Y. Similarly, if we are trying to prove f = g, where f and g both have type A
→ B, then we will usually start with the tactic apply funext, which will convert the goal to ∀
(x : A), f x = g x. By Theorem_5_1_4, this implies the original goal f = g. For example,
here is a proof that if two functions have the same graph, then they are equal:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

140

https://doi.org/10.1017/9781108539890

5.1. Functions

example {A B : Type} (f g : A → B) :
graph f = graph g → f = g := by

assume h1 : graph f = graph g --Goal : f = g
apply funext --Goal : ∀ (x : A), f x = g x
fix x : A
have h2 : (x, f x) ∈ graph f := by

define --Goal : f x = f x
rfl
done

rewrite [h1] at h2 --h2 : (x, f x) ∈ graph g
define at h2 --h2 : g x = f x
show f x = g x from h2.symm
done

The axiom of extensionality for sets says that a set is completely determined by its elements.
This is what justifies our usual method of defining a set: we specify what its elements are,
using notation like {0, 1, 2} or {x : Nat | x < 3}. Similarly, the axiom of extensionality for
functions says that a function is completely determined by its values, and therefore we can
define a function by specifying its values. For instance, we can define a function from Nat to
Nat by specifying, for any n : Nat, the result of applying the function to n. As an example of
this, we could define the “squaring function” from Nat to Nat to be the function that, when
applied to any n : Nat, produces the result n ^ 2. Here are two ways to define this function
in Lean:

def square1 (n : Nat) : Nat := n ^ 2

def square2 : Nat → Nat := fun (n : Nat) => n ^ 2

The first of these definitions uses notation we have used before; it says that if n has type Nat,
then the expression square1 n also has type Nat, and it is definitionally equal to n ^ 2. The
second definition introduces new Lean notation. It says that square2 has type Nat → Nat, and
it defines it to be the function that, when applied to any n of type Nat, yields the result n ^
2. Of course, this also means that square2 n is definitionally equal to n ^ 2. In general, the
notation fun (x : A) => ... means “the function which, when applied to any x of type A,
yields the result …” The two definitions above are equivalent. You can ask Lean to confirm
this, and try out the squaring function, as follows (the #eval command asks Lean to evaluate
an expression):

example : square1 = square2 := by rfl

:::::
#eval square1 7 --Answer: 49

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

141

https://doi.org/10.1017/9781108539890

5.1. Functions

There is one more theorem in Section 5.1 of HTPI. Theorem 5.1.5 says that if 𝑓 is a function
from 𝐴 to 𝐵 and 𝑔 is a function from 𝐵 to 𝐶, then the composition of 𝑔 and 𝑓 is a function from
𝐴 to 𝐶. To state this theorem in Lean, we will have to make adjustments for the differences
between the treatment of functions in HTPI and Lean. In Chapter 4, we defined comp S R to
be the composition of S and R, where R has type Set (A × B) and S had type Set (B × C). But
functions in Lean are not sets of ordered pairs, so we cannot apply the operation comp to them.
We can, however, apply it to their graphs. So the theorem corresponding to Theorem 5.1.5 in
HTPI is this:

theorem Theorem_5_1_5 {A B C : Type} (f : A → B) (g : B → C) :
∃ (h : A → C), graph h = comp (graph g) (graph f) := by

set h : A → C := fun (x : A) => g (f x)
apply Exists.intro h
apply Set.ext
fix (a, c) : A × C
apply Iff.intro
· -- Proof that (a, c) ∈ graph h → (a, c) ∈ comp (graph g) (graph f)

assume h1 : (a, c) ∈ graph h
define at h1 --h1 : h a = c
define --Goal : ∃ (x : B), (a, x) ∈ graph f ∧ (x, c) ∈ graph g
apply Exists.intro (f a)
apply And.intro
· -- Proof that (a, f a) ∈ graph f

define
rfl
done

· -- Proof that (f a, c) ∈ graph g
define
show g (f a) = c from h1
done

done
· -- Proof that (a, c) ∈ comp (graph g) (graph f) → (a, c) ∈ graph h

assume h1 : (a, c) ∈ comp (graph g) (graph f)
define --Goal : h a = c
define at h1 --h1 : ∃ (x : B), (a, x) ∈ graph f ∧ (x, c) ∈ graph g
obtain (b : B) (h2 : (a, b) ∈ graph f ∧ (b, c) ∈ graph g) from h1
have h3 : (a, b) ∈ graph f := h2.left
have h4 : (b, c) ∈ graph g := h2.right
define at h3 --h3 : f a = b
define at h4 --h4 : g b = c
rewrite [←h3] at h4 --h4 : g (f a) = c
show h a = c from h4

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

142

https://doi.org/10.1017/9781108539890

5.1. Functions

done
done

Notice that the proof of Theorem_5_1_5 begins by defining the function h for which graph h =
comp (graph g) (graph f). The definition says that for all x of type A, h x = g (f x). This
function h is called the composition of g and f, and it is denoted g ∘ f. (To type ∘ in VS Code,
type \comp or \circ.) In other words, g ∘ f has type A → C, and for all x of type A, (g ∘ f) x is
definitionally equal to g (f x). In HTPI, functions are sets of ordered pairs, and the operation
of composition of functions is literally the same as the operation comp that we used in Chapter
4. But in Lean, we distinguish among functions, relations, and sets of ordered pairs, so all we
can say is that the operation of composition of functions corresponds to the operation comp
from Chapter 4. The correspondence is that, as shown in the proof of Theorem_5_1_5, if h = g
∘ f, then graph h = comp (graph g) (graph f).

We saw in part 4 of Theorem 4.2.5 that composition of relations is associative. Composition
of functions is also associative. In fact, if f : A → B, g : B → C, and h : C → D, then h ∘ (g
∘ f) and (h ∘ g) ∘ f are definitionally equal, since they both mean the same thing as fun
(x : A) => h (g (f a)). As a result, the tactic rfl proves the associativity of composition of
functions:

example {A B C D : Type} (f : A → B) (g : B → C) (h : C → D) :
h ∘ (g ∘ f) = (h ∘ g) ∘ f := by rfl

HTPI defines the identity function on a set 𝐴 to be the function 𝑖𝐴 from 𝐴 to 𝐴 such that
∀𝑥 ∈ 𝐴(𝑖𝐴(𝑥) = 𝑥), and Exercise 9 from Section 4.3 of HTPI implies that if 𝑓 ∶ 𝐴 → 𝐵, then
𝑓 ∘ 𝑖𝐴 = 𝑓 and 𝑖𝐵 ∘ 𝑓 = 𝑓 . We say, therefore, that the identity functions are identity elements
for composition of functions. Similarly, in Lean, for each type A there is an identity function
from A to A. This identity function is denoted id; there is no need to specify A in the notation,
because A is an implicit argument to id. Thus, when you use id to denote an identity function,
Lean will figure out what type A to use as the domain of the function. (If, for some reason,
you want to specify that the domain is some type A, you can write @id A instead of id.) For
any x, of any type, id x is definitionally equal to x, and as a result the proof that id is an
identity element for composition of functions can also be done with the rfl tactic:

example {A B : Type} (f : A → B) : f ∘ id = f := by rfl

example {A B : Type} (f : A → B) : id ∘ f = f := by rfl

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

143

https://doi.org/10.1017/9781108539890

5.1. Functions

Exercises

1. theorem func_from_graph_ltr {A B : Type} (F : Set (A × B)) :
(∃ (f : A → B), graph f = F) → is_func_graph F := sorry

2. theorem Exercise_5_1_13a
{A B C : Type} (R : Set (A × B)) (S : Set (B × C)) (f : A → C)
(h1 : ∀ (b : B), b ∈ Ran R ∧ b ∈ Dom S) (h2 : graph f = comp S R) :
is_func_graph S := sorry

3. theorem Exercise_5_1_14a
{A B : Type} (f : A → B) (R : BinRel A) (S : BinRel B)
(h : ∀ (x y : A), R x y ↔ S (f x) (f y)) :
reflexive S → reflexive R := sorry

4. Here is a putative theorem:

Theorem?. Suppose 𝑓 ∶ 𝐴 → 𝐵, 𝑅 is a binary relation on 𝐴, and 𝑆 is the binary relation on
𝐵 defined as follows:

∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐵(𝑥𝑆𝑦 ↔ ∃𝑢 ∈ 𝐴∃𝑣 ∈ 𝐴(𝑓(𝑢) = 𝑥 ∧ 𝑓(𝑣) = 𝑦 ∧ 𝑢𝑅𝑣)).

If 𝑅 is reflexive then 𝑆 is reflexive.

Is the theorem correct? Try to prove it in Lean. If you can’t prove it, see if you can find a
counterexample.

--You might not be able to complete this proof
theorem Exercise_5_1_15a

{A B : Type} (f : A → B) (R : BinRel A) (S : BinRel B)
(h : ∀ (x y : B), S x y ↔ ∃ (u v : A), f u = x ∧ f v = y ∧ R u v) :
reflexive R → reflexive S := sorry

5. Here is a putative theorem with an incorrect proof:

Theorem?. Suppose 𝑓 ∶ 𝐴 → 𝐵, 𝑅 is a binary relation on 𝐴, and 𝑆 is the binary relation on
𝐵 defined as follows:

∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐵(𝑥𝑆𝑦 ↔ ∃𝑢 ∈ 𝐴∃𝑣 ∈ 𝐴(𝑓(𝑢) = 𝑥 ∧ 𝑓(𝑣) = 𝑦 ∧ 𝑢𝑅𝑣)).

If 𝑅 is transitive then 𝑆 is transitive.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

144

https://doi.org/10.1017/9781108539890

5.2. One-to-One and Onto

Incorrect Proof. Suppose 𝑅 is transitive. Let 𝑥, 𝑦, and 𝑧 be arbitrary elements of 𝐵. Assume
that 𝑥𝑆𝑦 and 𝑦𝑆𝑧. By the definition of 𝑆, this means that there are 𝑢, 𝑣, and 𝑤 in 𝐴 such
that 𝑓(𝑢) = 𝑥, 𝑓(𝑣) = 𝑦, 𝑓(𝑤) = 𝑧, 𝑢𝑅𝑣, and 𝑣𝑅𝑤. Since 𝑅 is transitive, it follows that 𝑢𝑅𝑤.
Since 𝑓(𝑢) = 𝑥, 𝑓(𝑤) = 𝑧, and 𝑢𝑅𝑤, 𝑥𝑆𝑧. Therefore 𝑆 is transitive.

Find the mistake in the proof by attempting to write the proof in Lean. Is the theorem
correct?

--You might not be able to complete this proof
theorem Exercise_5_1_15c

{A B : Type} (f : A → B) (R : BinRel A) (S : BinRel B)
(h : ∀ (x y : B), S x y ↔ ∃ (u v : A), f u = x ∧ f v = y ∧ R u v) :
transitive R → transitive S := sorry

6. theorem Exercise_5_1_16b
{A B : Type} (R : BinRel B) (S : BinRel (A → B))
(h : ∀ (f g : A → B), S f g ↔ ∀ (x : A), R (f x) (g x)) :
symmetric R → symmetric S := sorry

7. theorem Exercise_5_1_17a {A : Type} (f : A → A) (a : A)
(h : ∀ (x : A), f x = a) : ∀ (g : A → A), f ∘ g = f := sorry

8. theorem Exercise_5_1_17b {A : Type} (f : A → A) (a : A)
(h : ∀ (g : A → A), f ∘ g = f) :
∃ (y : A), ∀ (x : A), f x = y := sorry

5.2. One-to-One and Onto

Section 5.2 of HTPI introduces two important properties that a function might have. A
function f : A → B is called onto if for every b of type B there is at least one a of type A such
that f a = b:

def onto {A B : Type} (f : A → B) : Prop :=
∀ (y : B), ∃ (x : A), f x = y

It is called one-to-one if there do not exist distinct a1 and a2 of type A such that f a1 = f a2.
This phrasing of the definition makes it clear what is at issue: Are there distinct objects in
the domain to which the function assigns the same value? But it is a negative statement, and
that would make it difficult to work with it in proofs. Fortunately, it is not hard to rephrase

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

145

https://doi.org/10.1017/9781108539890

5.2. One-to-One and Onto

the definition as an equivalent positive statement, using quantifier negation, De Morgan, and
conditional laws. The resulting equivalent positive statement is given in Theorem 5.2.3 of
HTPI, and we take it as our official definition of one_to_one in Lean:

def one_to_one {A B : Type} (f : A → B) : Prop :=
∀ (x1 x2 : A), f x1 = f x2 → x1 = x2

There is only one more theorem about these properties in Section 5.2 of HTPI. It says that a
composition of one-to-one functions is one-to-one, and a composition of onto functions is onto.
It is straightforward to carry out these proofs in Lean by simply applying the definitions of
the relevant concepts.

theorem Theorem_5_2_5_1 {A B C : Type} (f : A → B) (g : B → C) :
one_to_one f → one_to_one g → one_to_one (g ∘ f) := by

assume h1 : one_to_one f
assume h2 : one_to_one g
define at h1 --h1 : ∀ (x1 x2 : A), f x1 = f x2 → x1 = x2
define at h2 --h2 : ∀ (x1 x2 : B), g x1 = g x2 → x1 = x2
define --Goal : ∀ (x1 x2 : A), (g ∘ f) x1 = (g ∘ f) x2 → x1 = x2
fix a1 : A
fix a2 : A --Goal : (g ∘ f) a1 = (g ∘ f) a2 → a1 = a2
define : (g ∘ f) a1; define : (g ∘ f) a2

--Goal : g (f a1) = g (f a2) → a1 = a2
assume h3 : g (f a1) = g (f a2)
have h4 : f a1 = f a2 := h2 (f a1) (f a2) h3
show a1 = a2 from h1 a1 a2 h4
done

Notice that the tactic define : (g ∘ f) a1 replaces (g ∘ f) a1 with its definition, g (f a1). As
usual, this step isn’t really needed—Lean will apply the definition on its own when necessary,
without being told. But using this tactic makes the proof easier to read. Also, notice that
define : g ∘ f produces a result that is much less useful. As we have observed before, the
define tactic works best when applied to a complete expression, rather than just a part of an
expression.

An alternative way to apply the definition of composition of functions is to prove a lemma
that can be used in the rewrite tactic. We try out this approach for the second part of the
theorem.

lemma comp_def {A B C : Type} (f : A → B) (g : B → C) (x : A) :
(g ∘ f) x = g (f x) := by rfl

theorem Theorem_5_2_5_2 {A B C : Type} (f : A → B) (g : B → C) :

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

146

https://doi.org/10.1017/9781108539890

5.2. One-to-One and Onto

onto f → onto g → onto (g ∘ f) := by
assume h1 : onto f
assume h2 : onto g
define at h1 --h1 : ∀ (y : B), ∃ (x : A), f x = y
define at h2 --h2 : ∀ (y : C), ∃ (x : B), g x = y
define --Goal : ∀ (y : C), ∃ (x : A), (g ∘ f) x = y
fix c : C
obtain (b : B) (h3 : g b = c) from h2 c
obtain (a : A) (h4 : f a = b) from h1 b
apply Exists.intro a --Goal : (g ∘ f) a = c
rewrite [comp_def] --Goal : g (f a) = c
rewrite [←h4] at h3
show g (f a) = c from h3
done

Exercises

1. theorem Exercise_5_2_10a {A B C : Type} (f: A → B) (g : B → C) :
onto (g ∘ f) → onto g := sorry

2. theorem Exercise_5_2_10b {A B C : Type} (f: A → B) (g : B → C) :
one_to_one (g ∘ f) → one_to_one f := sorry

3. theorem Exercise_5_2_11a {A B C : Type} (f: A → B) (g : B → C) :
onto f → ¬(one_to_one g) → ¬(one_to_one (g ∘ f)) := sorry

4. theorem Exercise_5_2_11b {A B C : Type} (f: A → B) (g : B → C) :
¬(onto f) → one_to_one g → ¬(onto (g ∘ f)) := sorry

5. theorem Exercise_5_2_12 {A B : Type} (f : A → B) (g : B → Set A)
(h : ∀ (b : B), g b = {a : A | f a = b}) :
onto f → one_to_one g := sorry

6. theorem Exercise_5_2_16 {A B C : Type}
(R : Set (A × B)) (S : Set (B × C)) (f : A → C) (g : B → C)
(h1 : graph f = comp S R) (h2 : graph g = S) (h3 : one_to_one g) :
is_func_graph R := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

147

https://doi.org/10.1017/9781108539890

5.3. Inverses of Functions

7. theorem Exercise_5_2_17a
{A B : Type} (f : A → B) (R : BinRel A) (S : BinRel B)
(h1 : ∀ (x y : B), S x y ↔ ∃ (u v : A), f u = x ∧ f v = y ∧ R u v)
(h2 : onto f) : reflexive R → reflexive S := sorry

8. theorem Exercise_5_2_17b
{A B : Type} (f : A → B) (R : BinRel A) (S : BinRel B)
(h1 : ∀ (x y : B), S x y ↔ ∃ (u v : A), f u = x ∧ f v = y ∧ R u v)
(h2 : one_to_one f) : transitive R → transitive S := sorry

9. theorem Exercise_5_2_21a {A B C : Type} (f : B → C) (g h : A → B)
(h1 : one_to_one f) (h2 : f ∘ g = f ∘ h) : g = h := sorry

10. theorem Exercise_5_2_21b {A B C : Type} (f : B → C) (a : A)
(h1 : ∀ (g h : A → B), f ∘ g = f ∘ h → g = h) :
one_to_one f := sorry

5.3. Inverses of Functions

Section 5.3 of HTPI is motivated by the following question: If 𝑓 is a function from 𝐴 to 𝐵, is
𝑓−1 a function from 𝐵 to 𝐴? Here is the first theorem in that section (HTPI p. 250):

Theorem 5.3.1. Suppose 𝑓 ∶ 𝐴 → 𝐵. If 𝑓 is one-to-one and onto, then 𝑓−1 ∶ 𝐵 → 𝐴.

Of course, we will have to rephrase this theorem slightly to prove it in Lean. If f has type A →
B, then the inverse operation inv cannot be applied to f, but it can be applied to graph f. So
we must rephrase the theorem like this:

theorem Theorem_5_3_1 {A B : Type}
(f : A → B) (h1 : one_to_one f) (h2 : onto f) :
∃ (g : B → A), graph g = inv (graph f)

To prove this theorem, we will use the theorem func_from_graph that was stated in Section
5.1. We can remind ourselves of what that theorem says by using the command #check
@func_from_graph, which gives the result:

@func_from_graph : ∀ {A B : Type} (F : Set (A × B)),
(∃ (f : A → B), graph f = F) ↔ is_func_graph F

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

148

https://doi.org/10.1017/9781108539890

5.3. Inverses of Functions

This means that, in the context of the proof of Theorem_5_3_1, func_from_graph (inv (graph
f)) is a proof of the statement

∃ (g : B → A), graph g = inv (graph f) ↔ is_func_graph (inv (graph f)).

Therefore the tactic rewrite [func_from_graph (inv (graph f))] will change the goal to
is_func_graph (inv (func f)). In fact, we can just use rewrite [func_from_graph], and
Lean will figure out how to apply the theorem to rewrite the goal. The rest of the proof is
straightforward.

theorem Theorem_5_3_1 {A B : Type}
(f : A → B) (h1 : one_to_one f) (h2 : onto f) :
∃ (g : B → A), graph g = inv (graph f) := by

rewrite [func_from_graph] --Goal : is_func_graph (inv (graph f))
define --Goal : ∀ (x : B), ∃! (y : A), (x, y) ∈ inv (graph f)
fix b : B
exists_unique
· -- Existence

define at h2 --h2 : ∀ (y : B), ∃ (x : A), f x = y
obtain (a : A) (h4 : f a = b) from h2 b
apply Exists.intro a --Goal : (b, a) ∈ inv (graph f)
define --Goal : f a = b
show f a = b from h4
done

· -- Uniqueness
fix a1 : A; fix a2 : A
assume h3 : (b, a1) ∈ inv (graph f)
assume h4 : (b, a2) ∈ inv (graph f) --Goal : a1 = a2
define at h3 --h3 : f a1 = b
define at h4 --h4 : f a2 = b
rewrite [←h4] at h3 --h3 : f a1 = f a2
define at h1 --h1 : ∀ (x1 x2 : A), f x1 = f x2 → x1 = x2
show a1 = a2 from h1 a1 a2 h3
done

done

Suppose, now, that we have f : A → B, g : B → A, and graph g = inv (graph f), as in
Theorem_5_3_1. What can we say about the relationship between f and g? One answer is that
g ∘ f = id and f ∘ g = id, as shown in Theorem 5.3.2 of HTPI. We’ll prove one of these facts,
and leave the other as an exercise for you.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

149

https://doi.org/10.1017/9781108539890

5.3. Inverses of Functions

theorem Theorem_5_3_2_1 {A B : Type} (f : A → B) (g : B → A)
(h1 : graph g = inv (graph f)) : g ∘ f = id := by

apply funext --Goal : ∀ (x : A), (g ∘ f) x = id x
fix a : A --Goal : (g ∘ f) a = id a
have h2 : (f a, a) ∈ graph g := by

rewrite [h1] --Goal : (f a, a) ∈ inv (graph f)
define --Goal : f a = f a
rfl
done

define at h2 --h2 : g (f a) = a
show (g ∘ f) a = id a from h2
done

theorem Theorem_5_3_2_2 {A B : Type} (f : A → B) (g : B → A)
(h1 : graph g = inv (graph f)) : f ∘ g = id := sorry

Combining the theorems above, we have shown that if f is one-to-one and onto, then there is
a function g such that g ∘ f = id and f ∘ g = id. In fact, the converse is true as well: if such
a function g exists, then f must be one-to-one and onto. Again, we’ll prove one statement and
leave the second as an exercise.

theorem Theorem_5_3_3_1 {A B : Type} (f : A → B) (g : B → A)
(h1 : g ∘ f = id) : one_to_one f := by

define --Goal : ∀ (x1 x2 : A), f x1 = f x2 → x1 = x2
fix a1 : A; fix a2 : A
assume h2 : f a1 = f a2
show a1 = a2 from

calc a1
_ = id a1 := by rfl
_ = (g ∘ f) a1 := by rw [h1]
_ = g (f a1) := by rfl
_ = g (f a2) := by rw [h2]
_ = (g ∘ f) a2 := by rfl
_ = id a2 := by rw [h1]
_ = a2 := by rfl

done

theorem Theorem_5_3_3_2 {A B : Type} (f : A → B) (g : B → A)
(h1 : f ∘ g = id) : onto f := sorry

We can combine the theorems above to show that if we have f : A → B, g : B → A, g ∘ f = id,
and f ∘ g = id, then graph g must be the inverse of graph f. Compare the proof below to the

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

150

https://doi.org/10.1017/9781108539890

5.3. Inverses of Functions

proof of Theorem 5.3.5 in HTPI.

theorem Theorem_5_3_5 {A B : Type} (f : A → B) (g : B → A)
(h1 : g ∘ f = id) (h2 : f ∘ g = id) : graph g = inv (graph f) := by

have h3 : one_to_one f := Theorem_5_3_3_1 f g h1
have h4 : onto f := Theorem_5_3_3_2 f g h2
obtain (g' : B → A) (h5 : graph g' = inv (graph f))

from Theorem_5_3_1 f h3 h4
have h6 : g' ∘ f = id := Theorem_5_3_2_1 f g' h5
have h7 : g = g' :=

calc g
_ = id ∘ g := by rfl
_ = (g' ∘ f) ∘ g := by rw [h6]
_ = g' ∘ (f ∘ g) := by rfl
_ = g' ∘ id := by rw [h2]
_ = g' := by rfl

rewrite [←h7] at h5
show graph g = inv (graph f) from h5
done

Exercises

1. theorem Theorem_5_3_2_2 {A B : Type} (f : A → B) (g : B → A)
(h1 : graph g = inv (graph f)) : f ∘ g = id := sorry

2. theorem Theorem_5_3_3_2 {A B : Type} (f : A → B) (g : B → A)
(h1 : f ∘ g = id) : onto f := sorry

3. theorem Exercise_5_3_11a {A B : Type} (f : A → B) (g : B → A) :
one_to_one f → f ∘ g = id → graph g = inv (graph f) := sorry

4. theorem Exercise_5_3_11b {A B : Type} (f : A → B) (g : B → A) :
onto f → g ∘ f = id → graph g = inv (graph f) := sorry

5. theorem Exercise_5_3_14a {A B : Type} (f : A → B) (g : B → A)
(h : f ∘ g = id) : ∀ x ∈ Ran (graph g), g (f x) = x := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

151

https://doi.org/10.1017/9781108539890

5.4. Closures

6. theorem Exercise_5_3_18 {A B C : Type} (f : A → C) (g : B → C)
(h1 : one_to_one g) (h2 : onto g) :
∃ (h : A → B), g ∘ h = f := sorry

The next two exercises will use the following definition:

def conjugate (A : Type) (f1 f2 : A → A) : Prop :=
∃ (g g' : A → A), (f1 = g' ∘ f2 ∘ g) ∧ (g ∘ g' = id) ∧ (g' ∘ g = id)

7. theorem Exercise_5_3_17a {A : Type} : symmetric (conjugate A) := sorry

8. theorem Exercise_5_3_17b {A : Type} (f1 f2 : A → A)
(h1 : conjugate A f1 f2) (h2 : ∃ (a : A), f1 a = a) :
∃ (a : A), f2 a = a := sorry

5.4. Closures

Suppose we have f : A → A and C : Set A. We say that C is closed under f if the value of f at
any element of C is again an element of C:

def closed {A : Type} (f : A → A) (C : Set A) : Prop := ∀ x ∈ C, f x ∈ C

According to this definition, closed f C means that C is closed under f. Sometimes, if we have
a set B of type Set A that is not closed under f, we are interested in adding more elements
to the set to make it closed. The closure of B under f is the smallest set containing B that is
closed under f. That is, it is the smallest element of {D : Set A | B ⊆ D ∧ closed f D}, where
we use the subset partial ordering on Set A to determine which element is smallest. We will
write closure f B C to mean that the closure of B under f is C. We can define this as follows:

def closure {A : Type} (f : A → A) (B C : Set A) : Prop :=
smallestElt (sub A) C {D : Set A | B ⊆ D ∧ closed f D}

We know that smallest elements, when they exist, are unique, so it makes sense to talk about
the closure of B under f. But not every set has a smallest element. Does every set have a
closure? Theorem 5.4.5 in HTPI says that the answer is yes. The idea behind the proof is
that, for any family of sets F, if F has a smallest element under the subset partial order, then
that smallest element is equal to ⋂₀ F. (We’ll ask you to prove this in the exercises.)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

152

https://doi.org/10.1017/9781108539890

5.4. Closures

theorem Theorem_5_4_5 {A : Type} (f : A → A) (B : Set A) :
∃ (C : Set A), closure f B C := by

set F : Set (Set A) := {D : Set A | B ⊆ D ∧ closed f D}
set C : Set A := ⋂₀ F
apply Exists.intro C --Goal : closure f B C
define --Goal : C ∈ F ∧ ∀ x ∈ F, C ⊆ x
apply And.intro
· -- Proof that C ∈ F

define --Goal : B ⊆ C ∧ closed f C
apply And.intro
· -- Proof that B ⊆ C

fix a : A
assume h1 : a ∈ B --Goal : a ∈ C
define --Goal : ∀ t ∈ F, a ∈ t
fix D : Set A
assume h2 : D ∈ F
define at h2 --h2 : B ⊆ D ∧ closed f D
show a ∈ D from h2.left h1
done

· -- Proof that C is closed under f
define --Goal : ∀ x ∈ C, f x ∈ C
fix a : A
assume h1 : a ∈ C --Goal : f a ∈ C
define --Goal : ∀ t ∈ F, f a ∈ t
fix D : Set A
assume h2 : D ∈ F --Goal : f a ∈ D
define at h1 --h1 : ∀ t ∈ F, a ∈ t
have h3 : a ∈ D := h1 D h2
define at h2 --h2 : B ⊆ D ∧ closed f D
have h4 : closed f D := h2.right
define at h4 --h4 : ∀ x ∈ D, f x ∈ D
show f a ∈ D from h4 a h3
done

done
· -- Proof that C is smallest

fix D : Set A
assume h1 : D ∈ F --Goal : sub A C D
define
fix a : A
assume h2 : a ∈ C --Goal : a ∈ D
define at h2 --h2 : ∀ t ∈ F, a ∈ t
show a ∈ D from h2 D h1

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

153

https://doi.org/10.1017/9781108539890

5.4. Closures

done
done

The idea of the closure of a set under a function can also be applied to functions of two
variables. One way to represent a function of two variables on a type A would be to use a
function g of type (A × A) → A. If a and b have type A, then (a, b) has type A × A, and the
result of applying the function g to the pair of values a and b would be written g (a, b).

However, there is another way to represent a function of two variables that turns out to be
more convenient in Lean. Suppose f has type A → A → A. As with the arrow used in conditional
propositions, the arrow for function types groups to the right, so A → A → A means A → (A →
A). Thus, if a has type A, then f a has type A → A. In other words, f a is a function from A
to A, and therefore if b has type A then f a b has type A. The upshot is that if f is followed
by two objects of type A, then the resulting expression has type A, so f can be thought of as a
function that applies to a pair of objects of type A and gives a value of type A.

For example, we can think of addition of integers as a function of two variables. Here are three
ways to define this function in Lean.

def plus (m n : Int) : Int := m + n

def plus' : Int → Int → Int := fun (m n : Int) => m + n

def plus'' : Int → Int → Int := fun (m : Int) => (fun (n : Int) => m + n)

The third definition matches the description above most closely: plus'' is a function that,
when applied to an integer m, produces a new function plus'' m : Int → Int. The function
plus'' m is defined to be the function that, when applied to an integer n, produces the value m
+ n. In other words, plus'' m n = m + n. The first two definitions are more convenient ways of
defining exactly the same function. Let’s have Lean confirm this, and try out the function:

example : plus = plus'' := by rfl

example : plus' = plus'' := by rfl

:::::
#eval plus 3 2 --Answer: 5

There are two reasons why this way of representing functions of two variables in Lean is more
convenient. First, it saves us the trouble of grouping the arguments of the function together
into an ordered pair before applying the function. If we have f : A → A → A and a b : A, then
to apply the function f to the arguments a and b we can just write f a b. Second, it allows
for the possibility of “partially applying” the function f. The expression f a is meaningful,
and denotes the function that, when applied to any b : A, produces the result f a b. For

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

154

https://doi.org/10.1017/9781108539890

5.4. Closures

example, if m is an integer, then plus m denotes the function that, when applied to an integer
n, produces the result m + n. We might call plus m the “add to m” function.

We have actually been using these ideas for a long time. In Chapter 3, we introduced the type
Pred U of predicates applying to objects of type U, but we did not explain how such predicates
are represented internally in Lean. In fact, Pred U is defined to be the type U → Prop, so if P
has type Pred U, then P is a function from U to Prop, and if x has type U, then the proposition
P x is the result of applying the function P to x. Similarly, Rel A B stands for A → B → Prop,
so if R has type Rel A B, then R is a function of two variables, one of type A and one of type B.
Earlier in this section, we defined closed f C to be the proposition asserting that C is closed
under f. This means that closed is a function of two variables, the first a function f of type A
→ A and the second a set C of type Set A (where the type A is an implicit argument of closed).
But that means that the partial application closed f denotes a function from Set A to Prop.
In other words, closed f is a predicate applying to sets of type Set A; we could think of it as
the “is closed under f” predicate. Similarly, in Section 4.4 we defined sub to be a function of
three variables: if A is a type and X and Y have type Set A, then sub A X Y is the proposition
X ⊆ Y. Since then, we have used the partial application sub A, which is the subset relation on
Set A. For example, we used it earlier in this section in the definition of closure.

Returning to the subject of closures, here’s how we can extend the idea of closures to functions
of two variables:

def closed2 {A : Type} (f : A → A → A) (C : Set A) : Prop :=
∀ x ∈ C, ∀ y ∈ C, f x y ∈ C

def closure2 {A : Type} (f : A → A → A) (B C : Set A) : Prop :=
smallestElt (sub A) C {D : Set A | B ⊆ D ∧ closed2 f D}

We will leave it as an exercise for you to prove that closures under functions of two variables
also exist.

theorem Theorem_5_4_9 {A : Type} (f : A → A → A) (B : Set A) :
∃ (C : Set A), closure2 f B C := sorry

Exercises

1. example {A : Type} (F : Set (Set A)) (B : Set A) :
smallestElt (sub A) B F → B = ⋂₀ F := sorry

2. If B has type Set A, then complement B is the set {a : A | a ∉ B}. Thus, for any a of type A,
a ∈ complement B if and only if a ∉ B:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

155

https://doi.org/10.1017/9781108539890

5.4. Closures

def complement {A : Type} (B : Set A) : Set A := {a : A | a ∉ B}

Use this definition to prove the following theorem:

theorem Exercise_5_4_7 {A : Type} (f g : A → A) (C : Set A)
(h1 : f ∘ g = id) (h2 : closed f C) : closed g (complement C) := sorry

3. theorem Exercise_5_4_9a {A : Type} (f : A → A) (C1 C2 : Set A)
(h1 : closed f C1) (h2 : closed f C2) : closed f (C1 ∪ C2) := sorry

4. theorem Exercise_5_4_10a {A : Type} (f : A → A) (B1 B2 C1 C2 : Set A)
(h1 : closure f B1 C1) (h2 : closure f B2 C2) :
B1 ⊆ B2 → C1 ⊆ C2 := sorry

5. theorem Exercise_5_4_10b {A : Type} (f : A → A) (B1 B2 C1 C2 : Set A)
(h1 : closure f B1 C1) (h2 : closure f B2 C2) :
closure f (B1 ∪ B2) (C1 ∪ C2) := sorry

6. theorem Theorem_5_4_9 {A : Type} (f : A → A → A) (B : Set A) :
∃ (C : Set A), closure2 f B C := sorry

7. Suppose we define a set to be closed under a family of functions if it is closed under all of
the functions in the family. Of course, the closure of a set B under a family of functions is the
smallest set containing B that is closed under the family.

def closed_family {A : Type} (F : Set (A → A)) (C : Set A) : Prop :=
∀ f ∈ F, closed f C

def closure_family {A : Type} (F : Set (A → A)) (B C : Set A) : Prop :=
smallestElt (sub A) C {D : Set A | B ⊆ D ∧ closed_family F D}

Prove that the closure of a set under a family of functions always exists:

theorem Exercise_5_4_13a {A : Type} (F : Set (A → A)) (B : Set A) :
∃ (C : Set A), closure_family F B C := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

156

https://doi.org/10.1017/9781108539890

5.5. Images and Inverse Images: A Research Project

5.5. Images and Inverse Images: A Research Project

Section 5.5 of HTPI introduces two new definitions (HTPI p. 268). Suppose 𝑓 ∶ 𝐴 → 𝐵. If
𝑋 ⊆ 𝐴, then the image of 𝑋 under 𝑓 is the set 𝑓(𝑋) defined as follows:

𝑓(𝑋) = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑋} = {𝑏 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋(𝑓(𝑥) = 𝑏)}.

If 𝑌 ⊆ 𝐵, then the inverse image of 𝑌 under 𝑓 is the set 𝑓−1(𝑌) defined as follows:

𝑓−1(𝑌) = {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) ∈ 𝑌 }.

Here are definitions of these concepts in Lean:

def image {A B : Type} (f : A → B) (X : Set A) : Set B :=
{f x | x ∈ X}

def inverse_image {A B : Type} (f : A → B) (Y : Set B) : Set A :=
{a : A | f a ∈ Y}

--The following theorems illustrate the meaning of these definitions:
theorem image_def {A B : Type} (f : A → B) (X : Set A) (b : B) :

b ∈ image f X ↔ ∃ x ∈ X, f x = b := by rfl

theorem inverse_image_def {A B : Type} (f : A → B) (Y : Set B) (a : A) :
a ∈ inverse_image f Y ↔ f a ∈ Y := by rfl

It is natural to wonder how these concepts interact with familiar operations on sets. HTPI
gives an example of such an interaction in Theorem 5.5.2. The theorem makes two assertions.
Here are proofs of the two parts of the theorem in Lean.

theorem Theorem_5_5_2_1 {A B : Type} (f : A → B) (W X : Set A) :
image f (W ∩ X) ⊆ image f W ∩ image f X := by

fix y : B
assume h1 : y ∈ image f (W ∩ X) --Goal : y ∈ image f W ∩ image f X
define at h1 --h1 : ∃ x ∈ W ∩ X, f x = y
obtain (x : A) (h2 : x ∈ W ∩ X ∧ f x = y) from h1
define : x ∈ W ∩ X at h2 --h2 : (x ∈ W ∧ x ∈ X) ∧ f x = y
apply And.intro
· -- Proof that y ∈ image f W

define --Goal : ∃ x ∈ W, f x = y
show ∃ (x : A), x ∈ W ∧ f x = y from

Exists.intro x (And.intro h2.left.left h2.right)
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

157

https://doi.org/10.1017/9781108539890

5.5. Images and Inverse Images: A Research Project

· -- Proof that y ∈ image f X
show y ∈ image f X from

Exists.intro x (And.intro h2.left.right h2.right)
done

done

theorem Theorem_5_5_2_2 {A B : Type} (f : A → B) (W X : Set A)
(h1 : one_to_one f) : image f (W ∩ X) = image f W ∩ image f X := by

apply Set.ext
fix y : B --Goal : y ∈ image f (W ∩ X) ↔ y ∈ image f W ∩ image f X
apply Iff.intro
· -- (→)

assume h2 : y ∈ image f (W ∩ X)
show y ∈ image f W ∩ image f X from Theorem_5_5_2_1 f W X h2
done

· -- (←)
assume h2 : y ∈ image f W ∩ image f X --Goal : y ∈ image f (W ∩ X)
define at h2 --h2 : y ∈ image f W ∧ y ∈ image f X
rewrite [image_def, image_def] at h2

--h2 : (∃ x ∈ W, f x = y) ∧ ∃ x ∈ X, f x = y
obtain (x1 : A) (h3 : x1 ∈ W ∧ f x1 = y) from h2.left
obtain (x2 : A) (h4 : x2 ∈ X ∧ f x2 = y) from h2.right
have h5 : f x2 = y := h4.right
rewrite [←h3.right] at h5 --h5 : f x2 = f x1
define at h1 --h1 : ∀ (x1 x2 : A), f x1 = f x2 → x1 = x2
have h6 : x2 = x1 := h1 x2 x1 h5
rewrite [h6] at h4 --h4 : x1 ∈ X ∧ f x1 = y
show y ∈ image f (W ∩ X) from

Exists.intro x1 (And.intro (And.intro h3.left h4.left) h3.right)
done

done

The rest of Section 5.5 of HTPI consists of statements for you to try to prove. Here are the
statements, written as examples in Lean. Some are correct and some are not; some can be
made correct by adding additional hypotheses or weakening the conclusion. Prove as much as
you can.

--Warning! Not all of these examples are correct!

example {A B : Type} (f : A → B) (W X : Set A) :
image f (W ∪ X) = image f W ∪ image f X := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

158

https://doi.org/10.1017/9781108539890

5.5. Images and Inverse Images: A Research Project

example {A B : Type} (f : A → B) (W X : Set A) :
image f (W \ X) = image f W \ image f X := sorry

example {A B : Type} (f : A → B) (W X : Set A) :
W ⊆ X ↔ image f W ⊆ image f X := sorry

example {A B : Type} (f : A → B) (Y Z : Set B) :
inverse_image f (Y ∩ Z) =

inverse_image f Y ∩ inverse_image f Z := sorry

example {A B : Type} (f : A → B) (Y Z : Set B) :
inverse_image f (Y ∪ Z) =

inverse_image f Y ∪ inverse_image f Z := sorry

example {A B : Type} (f : A → B) (Y Z : Set B) :
inverse_image f (Y \ Z) =

inverse_image f Y \ inverse_image f Z := sorry

example {A B : Type} (f : A → B) (Y Z : Set B) :
Y ⊆ Z ↔ inverse_image f Y ⊆ inverse_image f Z := sorry

example {A B : Type} (f : A → B) (X : Set A) :
inverse_image f (image f X) = X := sorry

example {A B : Type} (f : A → B) (Y : Set B) :
image f (inverse_image f Y) = Y := sorry

example {A : Type} (f : A → A) (C : Set A) :
closed f C → image f C ⊆ C := sorry

example {A : Type} (f : A → A) (C : Set A) :
image f C ⊆ C → C ⊆ inverse_image f C := sorry

example {A : Type} (f : A → A) (C : Set A) :
C ⊆ inverse_image f C → closed f C := sorry

example {A B : Type} (f : A → B) (g : B → A) (Y : Set B)
(h1 : f ∘ g = id) (h2 : g ∘ f = id) :
inverse_image f Y = image g Y := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

159

https://doi.org/10.1017/9781108539890

6 Mathematical Induction

6.1. Proof by Mathematical Induction

Section 6.1 of HTPI introduces a new proof technique called mathematical induction. It is used
for proving statements of the form ∀ (n : Nat), P n. Here is how it works (HTPI p. 273):

To prove a goal of the form ∀ (n : Nat), P n:

First prove P 0, and then prove ∀ (n : Nat), P n → P (n + 1). The first of these proofs is
sometimes called the base case and the second the induction step.

For an explanation of why this strategy works to establish the truth of ∀ (n : Nat), P n, see
HTPI. Here we focus on using mathematical induction in Lean.

To use mathematical induction in a Lean proof, we will use the tactic by_induc. If the goal
has the form ∀ (n : Nat), P n, then the by_induc tactic leaves the list of givens unchanged,
but it replaces the goal with the goals for the base case and induction step. Thus, the effect
of the tactic can be summarized as follows:

Tactic State Before Using Strategy

⋮
⊢ ∀ (n : Nat), P n

Tactic State After Using Strategy

▼ case Base_Case
⋮

⊢ P 0
▼ case Induction_Step
⋮

⊢ ∀ (n : Nat), P n → P (n + 1)

To illustrate proof by mathematical induction in Lean, we turn first to Example 6.1.2 in HTPI,
which gives a proof of the statement ∀𝑛 ∈ ℕ(3 ∣ (𝑛3 − 𝑛)). For reasons that we will explain a
little later, we will prove a slightly different theorem: ∀𝑛 ∈ ℕ(3 ∣ (𝑛3 + 2𝑛)). Here is a proof
of the theorem, modeled on the proof in Example 6.1.2 of HTPI (HTPI pp. 276–277).

Theorem. For every natural number 𝑛, 3 ∣ (𝑛3 + 2𝑛).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

160

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

Proof. We use mathematical induction.

Base Case: If 𝑛 = 0, then 𝑛3 + 2𝑛 = 0 = 3 ⋅ 0, so 3 ∣ (𝑛3 + 2𝑛).
Induction Step: Let 𝑛 be an arbitrary natural number and suppose 3 ∣ (𝑛3 + 2𝑛). Then we
can choose an integer 𝑘 such that 3𝑘 = 𝑛3 + 2𝑛. Thus,

(𝑛 + 1)3 + 2(𝑛 + 1) = 𝑛3 + 3𝑛2 + 3𝑛 + 1 + 2𝑛 + 2
= (𝑛3 + 2𝑛) + 3𝑛2 + 3𝑛 + 3
= 3𝑘 + 3𝑛2 + 3𝑛 + 3
= 3(𝑘 + 𝑛2 + 𝑛 + 1).

Therefore 3 ∣ ((𝑛 + 1)3 + 2(𝑛 + 1)), as required.

Now let’s try writing the same proof in Lean. We start, of course, with the by_induc tactic.

Lean File

theorem Like_Example_6_1_2 :
∀ (n : Nat), 3 ∣ n ^ 3 + 2 * n := by

by_induc
::::
done

Tactic State in Infoview

▼ case Base_Case
⊢ 3 ∣ 0 ^ 3 + 2 * 0
▼ case Induction_Step
⊢ ∀ (n : ℕ),
3 ∣ n ^ 3 + 2 * n →
3 ∣ (n + 1) ^ 3 +

2 * (n + 1)

The base case is easy: The define tactic tells us that the goal means ∃ (c : Nat), 0 ^ 3 + 2
* 0 = 3 * c, and then apply Exists.intro 0 changes the goal to 0 ^ 3 + 2 * 0 = 3 * 0. Both
sides are definitionally equal to 0, so rfl finishes off the base case. For the induction step, we
begin, as in the HTPI proof, by introducing an arbitrary natural number n and assuming 3 ∣
n ^ 3 + 2 * n. This assumption is called the inductive hypothesis, so in the Lean proof we
give it the identifier ih. Our goal now is to prove 3 ∣ (n + 1) ^ 3 + 2 * (n + 1).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

161

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

Lean File

theorem Like_Example_6_1_2 :
∀ (n : Nat), 3 ∣ n ^ 3 + 2 * n := by

by_induc
· -- Base Case

define
apply Exists.intro 0
rfl
done

· -- Induction Step
fix n : Nat
assume ih : 3 ∣ n ^ 3 + 2 * n
::::
done

done

Tactic State in Infoview

▼ case Induction_Step
n : ℕ
ih : 3 ∣ n ^ 3 + 2 * n
⊢ 3 ∣ (n + 1) ^ 3 +

2 * (n + 1)

The rest of the Lean proof follows the model of the HTPI proof: we use the inductive hypothesis
to introduce a k such that n ^ 3 + 2 * n = 3 * k, and then we use a calculational proof to
show that (n + 1) ^ 3 + 2 * (n + 1) = 3 * (k + n ^ 2 + n + 1).

theorem Like_Example_6_1_2 :
∀ (n : Nat), 3 ∣ n ^ 3 + 2 * n := by

by_induc
· -- Base Case

define --Goal : ∃ (c : Nat), 0 ^ 3 + 2 * 0 = 3 * c
apply Exists.intro 0
rfl
done

· -- Induction Step
fix n : Nat
assume ih : 3 ∣ n ^ 3 + 2 * n
define at ih --ih : ∃ (c : Nat), n ^ 3 + 2 * n = 3 * c
obtain (k : Nat) (h1 : n ^ 3 + 2 * n = 3 * k) from ih
define --Goal : ∃ (c : Nat), (n + 1) ^ 3 + 2 * (n + 1) = 3 * c
apply Exists.intro (k + n ^ 2 + n + 1)
show (n + 1) ^ 3 + 2 * (n + 1) = 3 * (k + n ^ 2 + n + 1) from

calc (n + 1) ^ 3 + 2 * (n + 1)
_ = n ^ 3 + 2 * n + 3 * n ^ 2 + 3 * n + 3 := by ring
_ = 3 * k + 3 * n ^ 2 + 3 * n + 3 := by rw [h1]
_ = 3 * (k + n ^ 2 + n + 1) := by ring

done
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

162

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

Next we’ll look at Example 6.1.1 in HTPI, which proves that for every natural number 𝑛,
20 + 21 + ⋯ + 2𝑛 = 2𝑛+1 − 1. Once again, we will change the theorem slightly before proving it
in Lean. What we will prove is that for every 𝑛, (20 + 21 + ⋯ + 2𝑛) + 1 = 2𝑛+1. To understand
this theorem you must be able to recognize what the “⋯” stands for. A human reader will
probably realize that the numbers being added up here are the numbers of the form 2𝑖, where
𝑖 runs through all of the natural numbers from 0 to 𝑛. But Lean can’t be expected to figure
out this pattern, so we must be more explicit.

Section 6.3 of HTPI introduces the explicit notation that mathematicians usually use for such
sums. If 𝑓 is a function whose domain is the natural numbers, then

𝑛
∑
𝑖=0

𝑓(𝑖) = 𝑓(0) + 𝑓(1) + ⋯ + 𝑓(𝑛).

More generally, if 𝑘 ≤ 𝑛 then
𝑛

∑
𝑖=𝑘

𝑓(𝑖) = 𝑓(𝑘) + 𝑓(𝑘 + 1) + ⋯ + 𝑓(𝑛).

The notation we will use in Lean for this sum is Sum i from k to n, f i. Thus, a mathematician
would state our theorem like this:

Theorem. For every natural number 𝑛,

(
𝑛

∑
𝑖=0

2𝑖) + 1 = 2𝑛+1.

And to state the same theorem in Lean, we will write:

theorem Like_Example_6_1_1 :
∀ (n : Nat), (Sum i from 0 to n, 2 ^ i) + 1 = 2 ^ (n + 1)

We will have more to say later about how the notation Sum i from k to n, f i is defined. But
to use the notation in a proof, we will just need to know a few theorems. The #check command
will tell us the meanings of the theorems sum_base, sum_step, and sum_from_zero_step:

@sum_base : ∀ {A : Type} [inst : AddZeroClass A] {k : ℕ} {f : ℕ → A},
Sum i from k to k, f i = f k

@sum_step : ∀ {A : Type} [inst : AddZeroClass A] {k n : ℕ} {f : ℕ → A},
k ≤ n → Sum i from k to n + 1, f i =

(Sum i from k to n, f i) + f (n + 1)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

163

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

@sum_from_zero_step :
∀ {A : Type} [inst : AddZeroClass A] {n : ℕ} {f : ℕ → A},
Sum i from 0 to n + 1, f i =

(Sum i from 0 to n, f i) + f (n + 1)

As usual, we don’t need to pay too much attention to the implicit arguments in the first line
of each statement. What is important is that sum_base can be used to prove any statement of
the form

Sum i from k to k, f i = f k

and sum_step proves any statement of the form

k ≤ n → Sum i from k to n + 1, f i = (Sum i from k to n, f i) + f (n + 1).

In the case k = 0, we have the simpler theorem sum_from_zero_step, which proves

Sum i from 0 to n + 1, f i = (Sum i from 0 to n, f i) + f (n + 1).

With that preparation, we can start on the proof. Once again we begin with the by_induc
tactic. Our goal for the base case is (Sum i from 0 to 0, 2 ^ i) + 1 = 2 ^ (0 + 1). To deal
with the term Sum i from 0 to 0, 2 ^ i, we use that fact that sum_base proves Sum i from
0 to 0, 2 ^ i = 2 ^ 0. It follows that the tactic rewrite [sum_base] will change the goal to
2 ^ 0 + 1 = 2 ^ (0 + 1). Of course, this means 2 = 2, so rfl finishes the base case. For
the induction step, we start by introducing an arbitrary natural number n and assuming the
inductive hypothesis.

theorem Like_Example_6_1_1 :
∀ (n : Nat), (Sum i from 0 to n, 2 ^ i) + 1 = 2 ^ (n + 1) := by

by_induc
· -- Base Case

rewrite [sum_base]
rfl
done

· -- Induction Step
fix n : Nat
assume ih : (Sum i from 0 to n, 2 ^ i) + 1 = 2 ^ (n + 1)
::::
done

done

Our goal is now (Sum i from 0 to n + 1, 2 ^ i) + 1 = 2 ^ (n + 1 + 1), and we use a calculational
proof to prove this. Often the key to the proof of the induction step is to find a relationship
between the inductive hypothesis and the goal. In this case, that means finding a relationship
between Sum i from 0 to n, 2 ^ i and Sum i from 0 to n + 1, 2 ^ i. The relationship we
need is given by the theorem sum_from_zero_step. The tactic rewrite [sum_from_zero_step]

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

164

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

will replace Sum i from 0 to n + 1, 2 ^ i with (Sum i from 0 to n, 2 ^ i) + 2 ^ (n + 1).
The rest of the calculation proof involves straightforward algebra, handled by the ring tactic,
together with an application of the inductive hypothesis.

theorem Like_Example_6_1_1 :
∀ (n : Nat), (Sum i from 0 to n, 2 ^ i) + 1 = 2 ^ (n + 1) := by

by_induc
· -- Base Case

rewrite [sum_base]
rfl
done

· -- Induction Step
fix n : Nat
assume ih : (Sum i from 0 to n, 2 ^ i) + 1 = 2 ^ (n + 1)
show (Sum i from 0 to n + 1, 2 ^ i) + 1 = 2 ^ (n + 1 + 1) from

calc (Sum i from 0 to n + 1, 2 ^ i) + 1
_ = (Sum i from 0 to n, 2 ^ i) + 2 ^ (n + 1) + 1 := by

rw [sum_from_zero_step]
_ = (Sum i from 0 to n, 2 ^ i) + 1 + 2 ^ (n + 1) := by ring
_ = 2 ^ (n + 1) + 2 ^ (n + 1) := by rw [ih]
_ = 2 ^ (n + 1 + 1) := by ring

done
done

The last example in Section 6.1 of HTPI gives a proof of the statement ∀𝑛 ≥ 5(2𝑛 > 𝑛2).
The proof is by mathematical induction, but since we are only interested in natural numbers
greater than or equal to 5, it uses 5 in the base case instead of 0. Here are the theorem and
proof from HTPI (HTPI p. 278):

Theorem. For every natural number 𝑛 ≥ 5, 2𝑛 > 𝑛2.

Proof. By mathematical induction.

Base case: When 𝑛 = 5 we have 2𝑛 = 32 > 25 = 𝑛2.

Induction step: Let 𝑛 ≥ 5 be arbitrary, and suppose that 2𝑛 > 𝑛2. Then

2𝑛+1 = 2 ⋅ 2𝑛

> 2𝑛2 (inductive hypothesis)
= 𝑛2 + 𝑛2

≥ 𝑛2 + 5𝑛 (since 𝑛 ≥ 5)
= 𝑛2 + 2𝑛 + 3𝑛
> 𝑛2 + 2𝑛 + 1 = (𝑛 + 1)2. □

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

165

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

Notice that the sequence of calculations at the end of the proof mixes =, >, and ≥ in a way
that establishes the final conclusion 2𝑛+1 > (𝑛 + 1)2. As we’ll see, such a mixture is allowed
in calculational proofs in Lean as well.

To write this proof in Lean, there is no need to specify that the base case should be n = 5;
the by_induc tactic is smart enough to figure that out on its own, as you can see in the tactic
state below. (Notice that, as in HTPI, in Lean we can write ∀ n ≥ k, P n as an abbreviation
for ∀ (n : Nat), n ≥ k → P n.)

Lean File

theorem Example_6_1_3 :
∀ n ≥ 5, 2 ^ n > n ^ 2 := by

by_induc
::::
done

Tactic State in Infoview

▼ case Base_Case
⊢ 2 ^ 5 > 5 ^ 2
▼ case Induction_Step
⊢ ∀ n ≥ 5,
2 ^ n > n ^ 2 →
2 ^ (n + 1) >

(n + 1) ^ 2

To complete this proof we’ll use two tactics we haven’t used before: decide and linarith. The
truth or falsity of the inequality in the base case can be decided by simply doing the necessary
arithmetic. The tactic decide can do such calculations, and it proves the base case.

For the induction step, we introduce an arbitrary natural number n, assume n ≥ 5, and assume
the inductive hypothesis, 2 ^ n > n ^ 2. Then we use a calculational proof to imitate the
reasoning at the end of the HTPI proof. The tactic linarith makes inferences that involve
combining linear equations and inequalities. It is able to prove almost all of the inequalities
in the calculational proof. The exception is n * n ≥ 5 * n (which is not linear because of
the term n * n). So we prove that inequality separately, using a theorem from Lean’s library,
Nat.mul_le_mul_right. The command #check @Nat.mul_le_mul_right tells us the meaning of
that theorem:

@Nat.mul_le_mul_right : ∀ {n m : ℕ} (k : ℕ), n ≤ m → n * k ≤ m * k

Thus, Nat.mul_le_mul_right n can be used to prove the statement 5 ≤ n → 5 * n ≤ n * n.
Lean recognizes x ≥ y as meaning the same thing as y ≤ x, so we can apply this statement to
our assumption n ≥ 5 to prove that n * n ≥ 5 * n. Once we have proven that inequality, the
linarith tactic can use it to complete the required inequality reasoning.

theorem Example_6_1_3 : ∀ n ≥ 5, 2 ^ n > n ^ 2 := by
by_induc
· -- Base Case

decide
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

166

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

· -- Induction Step
fix n : Nat
assume h1 : n ≥ 5
assume ih : 2 ^ n > n ^ 2
have h2 : n * n ≥ 5 * n := Nat.mul_le_mul_right n h1
show 2 ^ (n + 1) > (n + 1) ^ 2 from

calc 2 ^ (n + 1)
_ = 2 * 2 ^ n := by ring
_ > 2 * n ^ 2 := by linarith
_ ≥ n ^ 2 + 5 * n := by linarith
_ > n ^ 2 + 2 * n + 1 := by linarith
_ = (n + 1) ^ 2 := by ring

done
done

Finally, we turn to the question of why we made small changes in two of the examples from
HTPI. Perhaps you have guessed by now that we were trying to avoid the use of subtraction.
All of the numbers in the examples in this section were natural numbers, and subtraction of
natural numbers is problematic. In the natural numbers, 3 - 2 is equal to 1, but what is 2 -
3? Lean’s answer is 0.

:::::
#eval 2 - 3 --Answer: 0

In Lean, if a and b are natural numbers and a < b, then a - b is defined to be 0. As a result,
the algebraic laws of natural number subtraction are complicated. For example, 2 - 3 + 1 =
0 + 1 = 1, but 2 + 1 - 3 = 3 - 3 = 0, so it is not true that for all natural numbers a, b, and
c, a - b + c = a + c - b.

If you thought that the answer to the subtraction problem 2 - 3 was -1, then you automatically
switched from the natural numbers to the integers. (Recall that the natural numbers are the
numbers 0, 1, 2, …, while the integers are the numbers …, –3, –2, –1, 0, 1, 2, 3, ….) To a human
mathematician, this is a perfectly natural thing to do: the natural numbers are a subset of
the integers, so 2 and 3 are not only natural numbers but also integers, and we can compute
2 - 3 in the integers.

However, that’s not how things work in Lean. In Lean, different types are completely separate.
In particular, Nat and Int are separate types, and therefore the natural numbers are not a
subset of the integers. Of course, there is an integer 2, but it is different from the natural
number 2. By default, Lean assumes that 2 denotes the natural number 2, but you can specify
that you want the integer 2 by writing (2 : Int). Subtraction of integers in Lean is the
subtraction you are familiar with, and it has all the algebraic properties you would expect. If
we want to use subtraction in the theorems in this section, we are better off using familiar
integer subtraction rather than funky natural number subtraction.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

167

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

To prove the theorem in Example 6.1.1 as it appears in HTPI, we could state the theorem like
this:

theorem Example_6_1_1 :
∀ (n : Nat), Sum i from 0 to n, (2 : Int) ^ i =
(2 : Int) ^ (n + 1) - (1 : Int)

The expression Sum i from 0 to n, (2 : Int) ^ i denotes a sum of integers, so it is an integer.
Similarly, the right side of the equation is an integer, and the equation asserts the equality of
two integers. The subtraction on the right side of the equation is integer subtraction, so we
can use the usual algebraic laws to reason about it. In fact, the proof of the theorem in this
form is not hard:

theorem Example_6_1_1 :
∀ (n : Nat), Sum i from 0 to n, (2 : Int) ^ i =
(2 : Int) ^ (n + 1) - (1 : Int) := by

by_induc
· -- Base Case

rewrite [sum_base]
rfl
done

· -- Induction Step
fix n : Nat
assume ih : Sum i from 0 to n, (2 : Int) ^ i =

(2 : Int) ^ (n + 1) - (1 : Int)
show Sum i from 0 to n + 1, (2 : Int) ^ i =

(2 : Int) ^ (n + 1 + 1) - (1 : Int) from
calc Sum i from 0 to n + 1, (2 : Int) ^ i

_ = (Sum i from 0 to n, (2 : Int) ^ i)
+ (2 : Int) ^ (n + 1) := by rw [sum_from_zero_step]

_ = (2 : Int) ^ (n + 1) - (1 : Int)
+ (2 : Int) ^ (n + 1) := by rw [ih]

_ = (2 : Int) ^ (n + 1 + 1) - (1 : Int) := by ring
done

done

If you change (2 : Int) and (1 : Int) to 2 and 1, then the right side of the equation will be a
difference of two natural numbers, and Lean will interpret the subtraction as natural number
subtraction. The proof won’t work because the ring tactic is not able to deal with the peculiar
algebraic properties of natural number subtraction. (The theorem is still true, but the proof
is harder.)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

168

https://doi.org/10.1017/9781108539890

6.1. Proof by Mathematical Induction

Exercises

1. theorem Like_Exercise_6_1_1 :
∀ (n : Nat), 2 * Sum i from 0 to n, i = n * (n + 1) := sorry

2. theorem Like_Exercise_6_1_4 :
∀ (n : Nat), Sum i from 0 to n, 2 * i + 1 = (n + 1) ^ 2 := sorry

3. theorem Exercise_6_1_9a : ∀ (n : Nat), 2 ∣ n ^ 2 + n := sorry

4. theorem Exercise_6_1_13 :
∀ (a b : Int) (n : Nat), (a - b) ∣ (a ^ n - b ^ n) := sorry

5. theorem Exercise_6_1_15 : ∀ n ≥ 10, 2 ^ n > n ^ 3 := sorry

6. lemma nonzero_is successor :
∀ (n : Nat), n ≠ 0 → ∃ (m : Nat), n = m + 1 := sorry

For the next two exercises you will need the following definitions:

def nat_even (n : Nat) : Prop := ∃ (k : Nat), n = 2 * k

def nat_odd (n : Nat) : Prop := ∃ (k : Nat), n = 2 * k + 1

7. theorem Exercise_6_1_16a1 :
∀ (n : Nat), nat_even n ∨ nat_odd n := sorry

8. --Hint: You may find the lemma nonzero_is_successor
--from a previous exercise useful, as well as Nat.add_right_cancel.
theorem Exercise_6_1_16a2 :

∀ (n : Nat), ¬(nat_even n ∧ nat_odd n) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

169

https://doi.org/10.1017/9781108539890

6.2. More Examples

6.2. More Examples

We saw in the last section that mathematical induction can be used to prove theorems about
calculations involving natural numbers. But mathematical induction has a much wider range
of uses. Section 6.2 of HTPI illustrates this by proving two theorems about finite sets.

How can mathematical induction be used to prove a statement about finite sets? To say that
a set is finite means that it has 𝑛 elements, for some natural number 𝑛. Thus, to say that all
finite sets have some property, we can say that for every natural number 𝑛, every set with 𝑛
elements has the property. Since this statement starts with “for every natural number 𝑛,” we
can use mathematical induction to try to prove it.

What does it mean to say that a set “has 𝑛 elements”? Section 6.2 of HTPI says that for the
proofs in that section, “an intuitive understanding of this concept will suffice.” Unfortunately,
intuition is not Lean’s strong suit! So we’ll need to be more explicit about how to talk about
finite sets in Lean.

In Chapter 8, we’ll define numElts A n to be a proposition saying that the set A has n elements,
and we’ll prove several theorems involving that proposition. Those theorems make precise and
explicit the intuitive ideas that we’ll need in this section. We’ll state those theorems here and
use them in our proofs, but you’ll have to wait until Section 8.1½ to see how they are proven.
Here are the theorems we’ll need:

theorem zero_elts_iff_empty {U : Type} (A : Set U) :
numElts A 0 ↔ empty A

theorem one_elt_iff_singleton {U : Type} (A : Set U) :
numElts A 1 ↔ ∃ (x : U), A = {x}

theorem nonempty_of_pos_numElts {U : Type} {A : Set U} {n : Nat}
(h1 : numElts A n) (h2 : n > 0) : ∃ (x : U), x ∈ A

theorem remove_one_numElts {U : Type} {A : Set U} {n : Nat} {a : U}
(h1 : numElts A (n + 1)) (h2 : a ∈ A) : numElts (A \ {a}) n

These theorems should make intuitive sense. The first says that a set has zero elements if
and only if it is empty, and the second says that a set has one element if and only if it is a
singleton set. The third theorem says that if a set has a positive number of elements, then
there is something in the set. And the fourth says that if a set has 𝑛 + 1 elements and you
remove one element, then the resulting set has 𝑛 elements. You can probably guess that we’ll
be using the last theorem in the induction steps of our proofs.

Our first theorem about finite sets says that if 𝑅 is a partial order on 𝐴, then every finite,
nonempty subset of 𝐴 has an 𝑅-minimal element. (This is not true in general for infinite

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

170

https://doi.org/10.1017/9781108539890

6.2. More Examples

subsets of 𝐴. Can you think of an example of an infinite subset of a partially ordered set that
has no minimal element?) To say that a set is finite and nonempty we can say that it has 𝑛
elements for some 𝑛 ≥ 1. So here’s how we state our theorem in Lean:

theorem Example_6_2_1 {A : Type} (R : BinRel A) (h : partial_order R) :
∀ n ≥ 1, ∀ (B : Set A), numElts B n →

∃ (x : A), minimalElt R x B

When we use mathematical induction to prove this theorem, the base case will be n = 1. To
write the proof for the base case, we start by assuming B is a set with one element. We can
then use the theorem one_elt_iff_singleton to conclude that B = {b}, for some b of type A. We
need to prove that B has a minimal element, and the only possibility for the minimal element
is b. Verifying that minimalElt R b B is straightforward. Here is the proof of the base case:

theorem Example_6_2_1 {A : Type} (R : BinRel A) (h : partial_order R) :
∀ n ≥ 1, ∀ (B : Set A), numElts B n →

∃ (x : A), minimalElt R x B := by
by_induc
· -- Base Case

fix B : Set A
assume h2 : numElts B 1
rewrite [one_elt_iff_singleton] at h2
obtain (b : A) (h3 : B = {b}) from h2
apply Exists.intro b
define --Goal : b ∈ B ∧ ¬∃ x ∈ B, R x b ∧ x ≠ b
apply And.intro
· -- Proof that b ∈ B

rewrite [h3] --Goal : b ∈ {b}
define --Goal : b = b
rfl
done

· -- Proof that nothing in B is smaller than b
by_contra h4
obtain (x : A) (h5 : x ∈ B ∧ R x b ∧ x ≠ b) from h4
have h6 : x ∈ B := h5.left
rewrite [h3] at h6 --h6 : x ∈ {b}
define at h6 --h6 : x = b
show False from h5.right.right h6
done

done
· -- Induction Step

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

171

https://doi.org/10.1017/9781108539890

6.2. More Examples

::::
done

done

Notice that since the definition of minimalElt R b B involves a negative statement, we found
it convenient to use proof by contradiction to prove it.

For the induction step, we assume that n ≥ 1 and that every set with n elements has an R-
minimal element. We must prove that every set with n + 1 elements has a minimal element, so
we let B be an arbitrary set with n + 1 elements. To apply the inductive hypothesis, we need a
set with n elements. So we pick some b ∈ B (using the theorem nonempty_of_pos_numElts) and
then remove it from B to get the set B' = B \ {b}. The theorem remove_one_numElts tells us
that B' has n elements, so by the inductive hypothesis, we can then let c be a minimal element
of B'. We now know about two elements of B: b and c. Which will be a minimal element of B?
As explained in HTPI, it depends on whether or not R b c. We’ll prove that if R b c, then
b is a minimal element of B, and if not, then c is a minimal element. It will be convenient to
prove these last two facts separately as lemmas. The first lemma says that in the situation at
this point in the proof, if R b c, then b is an R-minimal element of B. Here is the proof.

lemma Lemma_6_2_1_1 {A : Type} {R : BinRel A} {B : Set A} {b c : A}
(h1 : partial_order R) (h2 : b ∈ B) (h3 : minimalElt R c (B \ {b}))
(h4 : R b c) : minimalElt R b B := by

define at h3
--h3 : c ∈ B \ {b} ∧ ¬∃ x ∈ B \ {b}, R x c ∧ x ≠ c

define --Goal : b ∈ B ∧ ¬∃ x ∈ B, R x b ∧ x ≠ b
apply And.intro h2 --Goal : ¬∃ x ∈ B, R x b ∧ x ≠ b
contradict h3.right with h5
obtain (x : A) (h6 : x ∈ B ∧ R x b ∧ x ≠ b) from h5
apply Exists.intro x --Goal : x ∈ B \ {b} ∧ R x c ∧ x ≠ c
apply And.intro
· -- Proof that x ∈ B \ {b}

show x ∈ B \ {b} from And.intro h6.left h6.right.right
done

· -- Proof that R x c ∧ x ≠ c
have Rtrans : transitive R := h1.right.left
have h7 : R x c := Rtrans x b c h6.right.left h4
apply And.intro h7
by_contra h8
rewrite [h8] at h6 --h6 : c ∈ B ∧ R c b ∧ c ≠ b
have Rantisymm : antisymmetric R := h1.right.right
have h9 : c = b := Rantisymm c b h6.right.left h4
show False from h6.right.right h9
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

172

https://doi.org/10.1017/9781108539890

6.2. More Examples

done

The second lemma says that if ¬R b c, then c is an R-minimal element of B. We’ll leave the
proof as an exercise for you:

lemma Lemma_6_2_1_2 {A : Type} {R : BinRel A} {B : Set A} {b c : A}
(h1 : partial_order R) (h2 : b ∈ B) (h3 : minimalElt R c (B \ {b}))
(h4 : ¬R b c) : minimalElt R c B := sorry

With this preparation, we are finally ready to give the proof of the induction step of
Example_6_2_1:

theorem Example_6_2_1 {A : Type} (R : BinRel A) (h : partial_order R) :
∀ n ≥ 1, ∀ (B : Set A), numElts B n →

∃ (x : A), minimalElt R x B := by
by_induc
· -- Base Case

...
· -- Induction Step

fix n : Nat
assume h2 : n ≥ 1
assume ih : ∀ (B : Set A), numElts B n → ∃ (x : A), minimalElt R x B
fix B : Set A
assume h3 : numElts B (n + 1)
have h4 : n + 1 > 0 := by linarith
obtain (b : A) (h5 : b ∈ B) from nonempty_of_pos_numElts h3 h4
set B' : Set A := B \ {b}
have h6 : numElts B' n := remove_one_numElts h3 h5
obtain (c : A) (h7 : minimalElt R c B') from ih B' h6
by_cases h8 : R b c
· -- Case 1. h8 : R b c

have h9 : minimalElt R b B := Lemma_6_2_1_1 h h5 h7 h8
show ∃ (x : A), minimalElt R x B from Exists.intro b h9
done

· -- Case 2. h8 : ¬R b c
have h9 : minimalElt R c B := Lemma_6_2_1_2 h h5 h7 h8
show ∃ (x : A), minimalElt R x B from Exists.intro c h9
done

done
done

We’ll consider one more theorem from Section 6.2 of HTPI. Example 6.2.2 proves that a partial
order on a finite set can always be extended to a total order. Rather than give that proof, we

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

173

https://doi.org/10.1017/9781108539890

6.2. More Examples

are going to prove the more general theorem that is stated in Exercise 2 in Section 6.2 of HTPI.
To explain the theorem in that exercise, it will be helpful to introduce a bit of terminology.
Suppose R is a partial order on A and b has type A. We will say that b is R-comparable to
everything if ∀ (x : A), R b x ∨ R x b. If B is a set of objects of type A, we say that B is
R-comparable to everything if every element of B is R-comparable to everything; that is, if ∀ b
∈ B, ∀ (x : A), R b x ∨ R x b. Finally, we say that another binary relation T extends R if ∀
(x y : A), R x y → T x y. We are going to prove that if R is a partial order on A and B is
a finite set of objects of type A, then there is a partial order T that extends R such that B is
T-comparable to everything. In other words, we are going to prove the following theorem:

theorem Exercise_6_2_2 {A : Type} (R : BinRel A) (h : partial_order R) :
∀ (n : Nat) (B : Set A), numElts B n → ∃ (T : BinRel A),
partial_order T ∧ (∀ (x y : A), R x y → T x y) ∧
∀ x ∈ B, ∀ (y : A), T x y ∨ T y x

In the exercises, we will ask you to show that this implies the theorem in Example 6.2.2.

It will be helpful to begin with a warm-up exercise. We’ll show that a partial order can always
be extended to make a single object comparable to everything. In other words, we’ll show that
if R is a partial order on A and b has type A, then we can define a partial order T extending
R such that b is T-comparable to everything. To define T, we will need to make sure that for
every x of type A, either T b x or T x b. If R x b, then since T must extend R, we must have T
x b. If ¬R x b, then we will define T so that T b x. But notice that if we follow this plan, then
for any x and y, if we have R x b and ¬R y b, then we will have T x b and T b y, and since
T must be transitive, we must then have T x y. Summing up, if we have R x y then we must
have T x y, and if we have R x b and ¬R y b then we will also need to have T x y. So let’s try
defining T x y to mean R x y ∨ (R x b ∧ ¬R y b).

It will be useful to have a name for this relation T. Since it is an extension of R determined by
the element b, we will give it the name extendPO R b. Here is the definition of this relation:

def extendPO {A : Type} (R : BinRel A) (b : A) (x y : A) : Prop :=
R x y ∨ (R x b ∧ ¬R y b)

We need to prove a number of things about extendPO R b. First of all, we need to prove that
it is a partial order. We’ll leave most of the details as exercises for you:

lemma extendPO_is_ref {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) : reflexive (extendPO R b) := sorry

lemma extendPO_is_trans {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) : transitive (extendPO R b) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

174

https://doi.org/10.1017/9781108539890

6.2. More Examples

lemma extendPO_is_antisymm {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) : antisymmetric (extendPO R b) := sorry

lemma extendPO_is_po {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) : partial_order (extendPO R b) :=

And.intro (extendPO_is_ref R b h)
(And.intro (extendPO_is_trans R b h) (extendPO_is_antisymm R b h))

It is easy to prove that extendPO R b extends R:

lemma extendPO_extends {A : Type} (R : BinRel A) (b : A) (x y : A) :
R x y → extendPO R b x y := by

assume h1 : R x y
define
show R x y ∨ R x b ∧ ¬R y b from Or.inl h1
done

Finally, we verify that extendPO R b does what it was supposed to do: it makes b comparable
with everything:

lemma extendPO_all_comp {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) :
∀ (x : A), extendPO R b b x ∨ extendPO R b x b := by

have Rref : reflexive R := h.left
fix x : A
or_left with h1
define at h1 --h1 : ¬(R x b ∨ R x b ∧ ¬R b b)
demorgan at h1 --h1 : ¬R x b ∧ ¬(R x b ∧ ¬R b b)
define --Goal : R b x ∨ R b b ∧ ¬R x b
apply Or.inr
show R b b ∧ ¬R x b from And.intro (Rref b) h1.left
done

With this preparation, we can finally return to our theorem Exercise_6_2_2. We will prove it
by mathematical induction. In the base case we must show that if B has 0 elements then we
can extend R to make everything in B comparable to everything. Of course, no extension is
necessary, since it is vacuously true that all elements of B are R-comparable to everything. For
the induction step, after assuming the inductive hypothesis, we must prove that if B has n + 1
elements then we can extend R to make all elements of B comparable to everything. As before,
we choose b ∈ B and let B' = B \ {b}. By inductive hypothesis, we can find an extension T' of
R that makes all elements of B' comparable to everything, so we just have to extend T' further
to make b comparable to everything. But as we have just seen, we can do this with extendPO
T' b.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

175

https://doi.org/10.1017/9781108539890

6.2. More Examples

theorem Exercise_6_2_2 {A : Type} (R : BinRel A) (h : partial_order R) :
∀ (n : Nat) (B : Set A), numElts B n → ∃ (T : BinRel A),
partial_order T ∧ (∀ (x y : A), R x y → T x y) ∧
∀ x ∈ B, ∀ (y : A), T x y ∨ T y x := by

by_induc
· -- Base Case

fix B : Set A
assume h2 : numElts B 0
rewrite [zero_elts_iff_empty] at h2
define at h2 --h2 : ¬∃ (x : A), x ∈ B
apply Exists.intro R
apply And.intro h
apply And.intro
· -- Proof that R extends R

fix x : A; fix y : A
assume h3 : R x y
show R x y from h3
done

· -- Proof that everything in B comparable to everything under R
fix x : A
assume h3 : x ∈ B
contradict h2
show ∃ (x : A), x ∈ B from Exists.intro x h3
done

done
· -- Induction Step

fix n : Nat
assume ih : ∀ (B : Set A), numElts B n → ∃ (T : BinRel A),

partial_order T ∧ (∀ (x y : A), R x y → T x y) ∧
∀ (x : A), x ∈ B → ∀ (y : A), T x y ∨ T y x

fix B : Set A
assume h2 : numElts B (n + 1)
have h3 : n + 1 > 0 := by linarith
obtain (b : A) (h4 : b ∈ B) from nonempty_of_pos_numElts h2 h3
set B' : Set A := B \ {b}
have h5 : numElts B' n := remove_one_numElts h2 h4
have h6 : ∃ (T : BinRel A), partial_order T ∧

(∀ (x y : A), R x y → T x y) ∧
∀ (x : A), x ∈ B' → ∀ (y : A), T x y ∨ T y x := ih B' h5

obtain (T' : BinRel A)
(h7 : partial_order T' ∧ (∀ (x y : A), R x y → T' x y) ∧

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

176

https://doi.org/10.1017/9781108539890

6.2. More Examples

∀ (x : A), x ∈ B' → ∀ (y : A), T' x y ∨ T' y x) from h6
have T'po : partial_order T' := h7.left
have T'extR : ∀ (x y : A), R x y → T' x y := h7.right.left
have T'compB' : ∀ (x : A), x ∈ B' →

∀ (y : A), T' x y ∨ T' y x := h7.right.right
set T : BinRel A := extendPO T' b
apply Exists.intro T
apply And.intro (extendPO_is_po T' b T'po)
apply And.intro
· -- Proof that T extends R

fix x : A; fix y : A
assume h8 : R x y
have h9 : T' x y := T'extR x y h8
show T x y from (extendPO_extends T' b x y h9)
done

· -- Proof that everything in B comparable to everything under T
fix x : A
assume h8 : x ∈ B
by_cases h9 : x = b
· -- Case 1. h9 : x = b

rewrite [h9]
show ∀ (y : A), T b y ∨ T y b from extendPO_all_comp T' b T'po
done

· -- Case 2. h9 : x ≠ b
have h10 : x ∈ B' := And.intro h8 h9
fix y : A
have h11 : T' x y ∨ T' y x := T'compB' x h10 y
by_cases on h11
· -- Case 2.1. h11 : T' x y

show T x y ∨ T y x from
Or.inl (extendPO_extends T' b x y h11)

done
· -- Case 2.2. h11 : T' y x

show T x y ∨ T y x from
Or.inr (extendPO_extends T' b y x h11)

done
done

done
done

done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

177

https://doi.org/10.1017/9781108539890

6.2. More Examples

Exercises

1. lemma Lemma_6_2_1_2 {A : Type} {R : BinRel A} {B : Set A} {b c : A}
(h1 : partial_order R) (h2 : b ∈ B) (h3 : minimalElt R c (B \ {b}))
(h4 : ¬R b c) : minimalElt R c B := sorry

2. lemma extendPO_is_ref {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) : reflexive (extendPO R b) := sorry

3. lemma extendPO_is_trans {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) : transitive (extendPO R b) := sorry

4. lemma extendPO_is_antisymm {A : Type} (R : BinRel A) (b : A)
(h : partial_order R) : antisymmetric (extendPO R b) := sorry

5. theorem Exercise_6_2_3 (A : Type) (R : BinRel A)
(h : total_order R) : ∀ n ≥ 1, ∀ (B : Set A),
numElts B n → ∃ (b : A), smallestElt R b B := sorry

6. --Hint: First prove that R is reflexive.
theorem Exercise_6_2_4a {A : Type} (R : BinRel A)

(h : ∀ (x y : A), R x y ∨ R y x) : ∀ n ≥ 1, ∀ (B : Set A),
numElts B n → ∃ x ∈ B, ∀ y ∈ B, ∃ (z : A), R x z ∧ R z y := sorry

7. theorem Like_Exercise_6_2_16 {A : Type} (f : A → A)
(h : one_to_one f) : ∀ (n : Nat) (B : Set A), numElts B n →
closed f B → ∀ y ∈ B, ∃ x ∈ B, f x = y := sorry

8. --Hint: Use Exercise_6_2_2.
theorem Example_6_2_2 {A : Type} (R : BinRel A)

(h1 : ∃ (n : Nat), numElts {x : A | x = x} n)
(h2 : partial_order R) : ∃ (T : BinRel A),
total_order T ∧ ∀ (x y : A), R x y → T x y := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

178

https://doi.org/10.1017/9781108539890

6.3. Recursion

6.3. Recursion

In the last two sections, we saw that we can prove that all natural numbers have some property
by proving that 0 has the property, and also that for every natural number 𝑛, if 𝑛 has the
property then so does 𝑛+1. In this section we will see that a similar idea can be used to define
a function whose domain is the natural numbers. We can define a function 𝑓 with domain ℕ
by specifying the value of 𝑓(0), and also saying how to compute 𝑓(𝑛 + 1) if you already know
the value of 𝑓(𝑛).
For example, we can define a function 𝑓 ∶ ℕ → ℕ as follows:

𝑓(0) = 1;
for every 𝑛 ∈ ℕ, 𝑓(𝑛 + 1) = (𝑛 + 1) ⋅ 𝑓(𝑛).

Here is the same definition written in Lean. (For reasons that will become clear shortly, we
have given the function the name fact.)

def fact (k : Nat) : Nat :=
match k with

| 0 => 1
| n + 1 => (n + 1) * fact n

Lean can use this definition to compute fact k for any natural number k. The match statement
tells Lean to try to match the input k with one of the two patterns 0 and n + 1, and then to use
the corresponding formula after => to compute fact k. For example, if we ask Lean for fact
4, it first checks if 4 matches 0. Since it doesn’t, it goes on to the next line and determines
that 4 matches the pattern n + 1, with n = 3, so it uses the formula fact 4 = 4 * fact 3. Of
course, now it must compute fact 3, which it does in the same way: 3 matches n + 1 with n
= 2, so fact 3 = 3 * fact 2. Continuing in this way, Lean determines that

fact 4 = 4 * fact 3 = 4 * (3 * fact 2) = 4 * (3 * (2 * fact 1))
= 4 * (3 * (2 * (1 * fact 0))) = 4 * (3 * (2 * (1 * 1))) = 24.

You can confirm this with the #eval command:

#eval fact 4 --Answer: 24

Of course, by now you have probably guessed why we used the name fact for his function:
fact k is k factorial—the product of all the numbers from 1 to k.

This style of definition is called a recursive definition. If a function is defined by a recursive
definition, then theorems about that function are often most easily proven by induction. For
example, here is a theorem about the factorial function. It is Example 6.3.1 in HTPI, and we
begin the Lean proof by imitating the proof in HTPI.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

179

https://doi.org/10.1017/9781108539890

6.3. Recursion

theorem
::::::::::::::
Example_6_3_1 : ∀ n ≥ 4, fact n > 2 ^ n := by

by_induc
· -- Base Case

decide
done

· -- Induction Step
fix n : Nat
assume h1 : n ≥ 4
assume ih : fact n > 2 ^ n
show fact (n + 1) > 2 ^ (n + 1) from

calc fact (n + 1)
_ = (n + 1) * fact n := by rfl
_ > (n + 1) * 2 ^ n := sorry
_ > 2 * 2 ^ n := sorry
_ = 2 ^ (n + 1) := by ring

done
done

There are two steps in the calculational proof at the end that require justification. The first
says that (n + 1) * fact n > (n + 1) * 2 ^ n, which should follow from the inductive
hypothesis ih : fact n > 2 ^ n by multiplying both sides by n + 1. Is there a theorem that
would justify this inference?

This may remind you of a step in Example_6_1_3 where we used the theorem Nat.mul_le_mul_right,
which says ∀ {n m : ℕ} (k : ℕ), n ≤ m → n * k ≤ m * k. Our situation in this example
is similar, but it involves a strict inequality (> rather than ≥) and it involves multiplying on
the left rather than the right. Many theorems about inequalities in Lean’s library contain
either le (for “less than or equal to”) or lt (for “less than”) in their names, but they can
also be used to prove statements involving ≥ or >. Perhaps the theorem we need is named
something like Nat.mul_lt_mul_left. If you type #check @Nat.mul_lt_mul_ into VS Code, a
pop-up window will appear listing several theorems that begin with Nat.mul_lt_mul_. There
is no Nat.mul_lt_mul_left, but there is a theorem called Nat.mul_lt_mul_of_pos_left, and its
meaning is

@Nat.mul_lt_mul_of_pos_left : ∀ {n m k : ℕ},
n < m → k > 0 → k * n < k * m

Lean has correctly reminded us that, to multiply both sides of a strict inequality by a number
k, we need to know that k > 0. So in our case, we’ll need to prove that n + 1 > 0. Once we
have that, we can use the theorem Nat.mul_lt_mul_of_pos_left to eliminate the first sorry.

The second sorry is similar: (n + 1) * 2 ^ n > 2 * 2 ^ n should follow from n + 1
> 2 and 2 ^ n > 0, and you can verify that the theorem that will justify this inference is
Nat.mul_lt_mul_of_pos_right.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

180

https://doi.org/10.1017/9781108539890

6.3. Recursion

So we have three inequalities that we need to prove before we can justify the steps of the
calculational proof: n + 1 > 0, n + 1 > 2, and 2 ^ n > 0. We’ll insert have steps before the
calculational proof to assert these three inequalities. If you try it, you’ll find that linarith
can prove the first two, but not the third.

How can we prove 2 ^ n > 0? It is often helpful to think about whether there is a general
principle that is behind a statement we are trying to prove. In our case, the inequality 2 ^ n
> 0 is an instance of the general fact that if m and n are any natural numbers with m > 0, then
m ^ n > 0. Maybe that fact is in Lean’s library:

example (m n : Nat) (h : m > 0) : m ^ n > 0 := by
:::::::
apply?

The apply? tactic comes up with exact Nat.pos_pow_of_pos n h, and #check @Nat.pos_pow_of_pos
gives the result

@Nat.pos_pow_of_pos : ∀ {n : ℕ} (m : ℕ), 0 < n → 0 < n ^ m

That means that we can use Nat.pos_pow_of_pos to prove 2 ^ n > 0, but first we’ll need to
prove that 2 > 0. We now have all the pieces we need; putting them together leads to this
proof:

theorem Example_6_3_1 : ∀ n ≥ 4, fact n > 2 ^ n := by
by_induc
· -- Base Case

decide
done

· -- Induction Step
fix n : Nat
assume h1 : n ≥ 4
assume ih : fact n > 2 ^ n
have h2 : n + 1 > 0 := by linarith
have h3 : n + 1 > 2 := by linarith
have h4 : 2 > 0 := by linarith
have h5 : 2 ^ n > 0 := Nat.pos_pow_of_pos n h4
show fact (n + 1) > 2 ^ (n + 1) from

calc fact (n + 1)
_ = (n + 1) * fact n := by rfl
_ > (n + 1) * 2 ^ n := Nat.mul_lt_mul_of_pos_left ih h2
_ > 2 * 2 ^ n := Nat.mul_lt_mul_of_pos_right h3 h5
_ = 2 ^ (n + 1) := by ring

done
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

181

https://doi.org/10.1017/9781108539890

6.3. Recursion

But there is an easier way. Look at the two “>” steps in the calculational proof at the end
of Example_6_3_1. In both cases, we took a known relationship between two quantities and
did something to both sides that preserved the relationship. In the first case, the known
relationship was ih : fact n > 2 ^ n, and we multiplied both sides by n + 1 on the left; in the
second, the known relationship was h3 : n + 1 > 2, and we multiplied both sides by 2 ^ n on
the right. To justify these steps, we had to find the right theorems in Lean’s library, and we
ended up needing auxiliary positivity facts: h2 : n + 1 > 0 in the first case and h5 : 2 ^ n >
0 in the second. There is a tactic that can simplify these steps: if h is a proof of a statement
asserting a relationship between two quantities, then the tactic rel [h] will attempt to prove
any statement obtained from that relationship by applying the same operation to both sides.
The tactic will try to find a theorem in Lean’s library that says that the operation preserves
the relationship, and if the theorem requires auxiliary positivity facts, it will try to prove those
facts as well. The rel tactic doesn’t always succeed, but when it does, it saves you the trouble
of searching through the library for the necessary theorems. In this case, the tactic allows us
to give a much simpler proof of Example_6_3_1:

theorem Example_6_3_1 : ∀ n ≥ 4, fact n > 2 ^ n := by
by_induc
· -- Base Case

decide
done

· -- Induction Step
fix n : Nat
assume h1 : n ≥ 4
assume ih : fact n > 2 ^ n
have h2 : n + 1 > 2 := by linarith
show fact (n + 1) > 2 ^ (n + 1) from

calc fact (n + 1)
_ = (n + 1) * fact n := by rfl
_ > (n + 1) * 2 ^ n := by rel [ih]
_ > 2 * 2 ^ n := by rel [h2]
_ = 2 ^ (n + 1) := by ring

done
done

The next example in HTPI is a proof of one of the laws of exponents: a ^ (m + n) = a ^ m
* a ^ n. Lean’s definition of exponentiation with natural number exponents is recursive. The
definitions Lean uses are essentially as follows:

--For natural numbers b and k, b ^ k = nat_pow b k:
def nat_pow (b k : Nat) : Nat :=
match k with

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

182

https://doi.org/10.1017/9781108539890

6.3. Recursion

| 0 => 1
| n + 1 => (nat_pow b n) * b

--For a real number b and a natural number k, b ^ k = real_pow b k:
def real_pow (b : Real) (k : Nat) : Real :=
match k with

| 0 => 1
| n + 1 => (real_pow b n) * b

Let’s prove the addition law for exponents:

theorem Example_6_3_2_cheating : ∀ (a : Real) (m n : Nat),
a ^ (m + n) = a ^ m * a ^ n := by

fix a : Real; fix m : Nat; fix n : Nat
ring
done

Well, that wasn’t really fair. The ring tactic knows the laws of exponents, so it has no trouble
proving this theorem. But we want to know why the law holds, so let’s see if we can prove it
without using ring. The following proof is essentially the same as the proof in HTPI :

theorem Example_6_3_2 : ∀ (a : Real) (m n : Nat),
a ^ (m + n) = a ^ m * a ^ n := by

fix a : Real; fix m : Nat
--Goal : ∀ (n : Nat), a ^ (m + n) = a ^ m * a ^ n

by_induc
· -- Base Case

show a ^ (m + 0) = a ^ m * a ^ 0 from
calc a ^ (m + 0)

_ = a ^ m := by rfl
_ = a ^ m * 1 := (mul_one (a ^ m)).symm
_ = a ^ m * a ^ 0 := by rfl

done
· -- Induction Step

fix n : Nat
assume ih : a ^ (m + n) = a ^ m * a ^ n
show a ^ (m + (n + 1)) = a ^ m * a ^ (n + 1) from

calc a ^ (m + (n + 1))
_ = a ^ ((m + n) + 1) := by rw [add_assoc]
_ = a ^ (m + n) * a := by rfl
_ = (a ^ m * a ^ n) * a := by rw [ih]
_ = a ^ m * (a ^ n * a) := by rw [mul_assoc]

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

183

https://doi.org/10.1017/9781108539890

6.3. Recursion

_ = a ^ m * (a ^ (n + 1)) := by rfl
done

done

Finally, we’ll prove the theorem in Example 6.3.4 of HTPI, which again involves exponentiation
with natural number exponents. Here’s the beginning of the proof:

Lean File

theorem Example_6_3_4 : ∀ (x : Real), x > -1 →
∀ (n : Nat), (1 + x) ^ n ≥ 1 + n * x := by

fix x : Real
assume h1 : x > -1
::::
done

Tactic State in Infoview

x : ℝ
h1 : x > -1
⊢ ∀ (n : ℕ),
(1 + x) ^ n ≥

1 + ↑n * x

Look carefully at the goal in the tactic state. Why is there a ↑ before the last n? The reason has
to do with types. The variable x has type Real and n has type Nat, so how can Lean multiply
n by x? Remember, in Lean, the natural numbers are not a subset of the real numbers. The
two types are completely separate, but for each natural number, there is a corresponding real
number. To multiply n by x, Lean had to convert n to the corresponding real number, through
a process called coercion. The notation ↑n denotes the result of coercing (or casting) n to
another type—in this case, Real. Since ↑n and x are both real numbers, Lean can use the
multiplication operation on the real numbers to multiply them. (To type ↑ in VSCode, type
\uparrow, or just \u.)

As we will see, the need for coercion in this example will make the proof a bit more complicated,
because we’ll need to use some theorems about coercions. Theorems about coercion of natural
numbers to some other type often have names that start Nat.cast.

Continuing with the proof, since exponentiation is defined recursively, let’s try mathematical
induction:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

184

https://doi.org/10.1017/9781108539890

6.3. Recursion

Lean File

theorem Example_6_3_4 : ∀ (x : Real), x > -1 →
∀ (n : Nat), (1 + x) ^ n ≥ 1 + n * x := by

fix x : Real
assume h1 : x > -1
by_induc
· -- Base Case

::::
done

· -- Induction Step

::::
done

done

Tactic State in Infoview

▼ case Base_Case
x : ℝ
h1 : x > -1
⊢ (1 + x) ^ 0 ≥
1 + ↑0 * x

You might think that linarith could prove the goal for the base case, but it can’t. The
problem is the ↑0, which denotes the result of coercing the natural number 0 to a real number.
Of course, that should be the real number 0, but is it? Yes, but the linarith tactic doesn’t
know that. The theorem Nat.cast_zero says that ↑0 = 0 (where the 0 on the right side of
the equation is the real number 0), so the tactic rewrite [Nat.cast_zero] will convert ↑0 to
0. After that step, linarith can complete the proof of the base case, and we can start on the
induction step.

Lean File

theorem Example_6_3_4 : ∀ (x : Real), x > -1 →
∀ (n : Nat), (1 + x) ^ n ≥ 1 + n * x := by

fix x : Real
assume h1 : x > -1
by_induc
· -- Base Case

rewrite [Nat.cast_zero]
linarith
done

· -- Induction Step
fix n : Nat
assume ih : (1 + x) ^ n ≥ 1 + n * x
::::
done

done

Tactic State in Infoview

▼ case Induction_Step
x : ℝ
h1 : x > -1
n : ℕ
ih : (1 + x) ^ n ≥

1 + ↑n * x
⊢ (1 + x) ^ (n + 1) ≥
1 + ↑(n + 1) * x

Once again, there’s a complication caused by coercion. The inductive hypothesis talks about
↑n, but the goal involves ↑(n + 1). What is the relationship between these? Surely it should
be the case that ↑(n + 1) = ↑n + 1; that is, the result of coercing the natural number n +
1 to a real number should be one larger than the result of coercing n to a real number. The

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

185

https://doi.org/10.1017/9781108539890

6.3. Recursion

theorem Nat.cast_succ says exactly that, so rewrite [Nat.cast_succ] will change the ↑(n + 1)
in the goal to ↑n + 1. (The number n + 1 is sometimes called the successor of n, and succ is
short for “successor.”) With that change, we can continue with the proof. The following proof
is modeled on the proof in HTPI.

theorem
::::::::::::::
Example_6_3_4 : ∀ (x : Real), x > -1 →

∀ (n : Nat), (1 + x) ^ n ≥ 1 + n * x := by
fix x : Real
assume h1 : x > -1
by_induc
· -- Base Case

rewrite [Nat.cast_zero]
linarith
done

· -- Induction Step
fix n : Nat
assume ih : (1 + x) ^ n ≥ 1 + n * x
rewrite [Nat.cast_succ]
show (1 + x) ^ (n + 1) ≥ 1 + (n + 1) * x from

calc (1 + x) ^ (n + 1)
_ = (1 + x) ^ n * (1 + x) := by rfl
_ ≥ (1 + n * x) * (1 + x) := sorry
_ = 1 + n * x + x + n * x ^ 2 := by ring
_ ≥ 1 + n * x + x + 0 := sorry
_ = 1 + (n + 1) * x := by ring

done
done

Note that in the calculational proof, each n or n + 1 that is multiplied by x is really ↑n or ↑n +
1, but we don’t need to say so explicitly; Lean fills in coercions automatically when they are
required.

All that’s left is to replace the two occurrences of sorry with justifications. The first sorry step
should follow from the inductive hypothesis by multiplying both sides by 1 + x, so a natural
attempt to justify it would be by rel [ih]. Unfortunately, we get an error message saying
that rel failed. The error message tells us that rel needed to know that 0 ≤ 1 + x, and it was
unable to prove it, so we’ll have to provide a proof of that statement ourselves. Fortunately,
linarith can handle it (deducing it from h1 : x > -1), and once we fill in that additional step,
the rel tactic succeeds.

theorem
::::::::::::::
Example_6_3_4 : ∀ (x : Real), x > -1 →

∀ (n : Nat), (1 + x) ^ n ≥ 1 + n * x := by
fix x : Real

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

186

https://doi.org/10.1017/9781108539890

6.3. Recursion

assume h1 : x > -1
by_induc
· -- Base Case

rewrite [Nat.cast_zero]
linarith
done

· -- Induction Step
fix n : Nat
assume ih : (1 + x) ^ n ≥ 1 + n * x
rewrite [Nat.cast_succ]
have h2 : 0 ≤ 1 + x := by linarith
show (1 + x) ^ (n + 1) ≥ 1 + (n + 1) * x from

calc (1 + x) ^ (n + 1)
_ = (1 + x) ^ n * (1 + x) := by rfl
_ ≥ (1 + n * x) * (1 + x) := by rel [ih]
_ = 1 + n * x + x + n * x ^ 2 := by ring
_ ≥ 1 + n * x + x + 0 := sorry
_ = 1 + (n + 1) * x := by ring

done
done

For the second sorry step, we’ll need to know that n * x ^ 2 ≥ 0. To prove it, we start with
the fact that the square of any real number is nonnegative:

@sq_nonneg : ∀ {α : Type u_1} [inst : LinearOrderedSemiring α]
[inst_1 : ExistsAddOfLE α]
(a : α), 0 ≤ a ^ 2

As usual, we don’t need to pay much attention to the implicit arguments; what is important
is the last line, which tells us that sq_nonneg x is a proof of x ^ 2 ≥ 0. To get n * x ^ 2 ≥ 0
we just have to multiply both sides by n, which we can justify with the rel tactic, and then
one more application of rel will handle the remaining sorry. Here is the complete proof:

theorem Example_6_3_4 : ∀ (x : Real), x > -1 →
∀ (n : Nat), (1 + x) ^ n ≥ 1 + n * x := by

fix x : Real
assume h1 : x > -1
by_induc
· -- Base Case

rewrite [Nat.cast_zero]
linarith
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

187

https://doi.org/10.1017/9781108539890

6.3. Recursion

· -- Induction Step
fix n : Nat
assume ih : (1 + x) ^ n ≥ 1 + n * x
rewrite [Nat.cast_succ]
have h2 : 0 ≤ 1 + x := by linarith
have h3 : x ^ 2 ≥ 0 := sq_nonneg x
have h4 : n * x ^ 2 ≥ 0 :=

calc n * x ^ 2
_ ≥ n * 0 := by rel [h3]
_ = 0 := by ring

show (1 + x) ^ (n + 1) ≥ 1 + (n + 1) * x from
calc (1 + x) ^ (n + 1)

_ = (1 + x) ^ n * (1 + x) := by rfl
_ ≥ (1 + n * x) * (1 + x) := by rel [ih]
_ = 1 + n * x + x + n * x ^ 2 := by ring
_ ≥ 1 + n * x + x + 0 := by rel [h4]
_ = 1 + (n + 1) * x := by ring

done
done

Before ending this section, we’ll return to a topic left unexplained before. We can now describe
how Sum i from k to n, f i is defined. The key is a function sum_seq, which is defined by
recursion:

def sum_seq {A : Type} [AddZeroClass A]
(m k : Nat) (f : Nat → A) : A :=

match m with
| 0 => 0
| n + 1 => sum_seq n k f + f (k + n)

To get an idea of what this definition means, let’s try evaluating sum_seq 3 k f:

sum_seq 3 k f = sum_seq 2 k f + f (k + 2)
= sum_seq 1 k f + f (k + 1) + f (k + 2)
= sum_seq 0 k f + f (k + 0) + f (k + 1) + f (k + 2)
= 0 + f (k + 0) + f (k + 1) + f (k + 2)
= f k + f (k + 1) + f (k + 2).

So sum_seq 3 k f adds up three consecutive values of f, starting with f k. More generally,
sum_seq n k f adds up a sequence of n consecutive values of f, starting with f k. (The implicit
arguments say that the type of the values of f can be any type for which + and 0 make sense.)
The notation Sum i from k to n, f i is now defined to be a shorthand for sum_seq (n + 1 -
k) k f. We’ll leave it to you to puzzle out why that gives the desired result.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

188

https://doi.org/10.1017/9781108539890

6.3. Recursion

Exercises

1. theorem Exercise_6_3_4 : ∀ (n : Nat),
3 * (Sum i from 0 to n, (2 * i + 1) ^ 2) =
(n + 1) * (2 * n + 1) * (2 * n + 3) := sorry

2. theorem Exercise_6_3_7b (f : Nat → Real) (c : Real) : ∀ (n : Nat),
Sum i from 0 to n, c * f i = c * Sum i from 0 to n, f i := sorry

3. theorem fact_pos : ∀ (n : Nat), fact n ≥ 1 := sorry

4. --Hint: Use the theorem fact_pos from the previous exercise.
theorem Exercise_6_3_13a (k : Nat) : ∀ (n : Nat),

fact (k ^ 2 + n) ≥ k ^ (2 * n) := sorry

5. --Hint: Use the theorem in the previous exercise.
--You may find it useful to first prove a lemma:
--∀ (k : Nat), 2 * k ^ 2 + 1 ≥ k
theorem Exercise_6_3_13b (k : Nat) : ∀ n ≥ 2 * k ^ 2,

fact n ≥ k ^ n := sorry

6. A sequence is defined recursively as follows:

def seq_6_3_15 (k : Nat) : Int :=
match k with

| 0 => 0
| n + 1 => 2 * seq_6_3_15 n + n

Prove the following theorem about this sequence:

theorem Exercise_6_3_15 : ∀ (n : Nat),
seq_6_3_15 n = 2 ^ n - n - 1 := sorry

7. A sequence is defined recursively as follows:

def seq_6_3_16 (k : Nat) : Nat :=
match k with

| 0 => 2
| n + 1 => (seq_6_3_16 n) ^ 2

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

189

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

Find a formula for seq_6_3_16 n. Fill in the blank in the theorem below with your formula
and then prove the theorem.

theorem Exercise_6_3_16 : ∀ (n : Nat),
seq_6_3_16 n = ___ := sorry

6.4. Strong Induction

In the induction step of a proof by mathematical induction, we prove that a natural number
has some property from the assumption that the previous number has the property. Section
6.4 of HTPI introduces a version of mathematical induction in which we get to assume that
all smaller numbers have the property. Since this is a stronger assumption, this version of
induction is called strong induction. Here is how strong induction works (HTPI p. 304):

To prove a goal of the form ∀ (n : Nat), P n:

Prove that ∀ (n : Nat), (∀ n_1 < n, P n_1) → P n.

To write a proof by strong induction in Lean, we use the tactic by_strong_induc, whose effect
on the tactic state can be illustrated as follows.

Tactic State Before Using Strategy

⋮
⊢ ∀ (n : Nat), P n

Tactic State After Using Strategy

⋮
⊢ ∀ (n : Nat),

(∀ n_1 < n, P n_1) → P n

To illustrate this, we begin with Example 6.4.1 of HTPI.

theorem Example_6_4_1 : ∀ m > 0, ∀ (n : Nat),
∃ (q r : Nat), n = m * q + r ∧ r < m

Imitating the strategy of the proof in HTPI, we let m be an arbitrary natural number, assume
m > 0, and then prove the statement ∀ (n : Nat), ∃ (q r : Nat), n = m * q + r ∧ r <
m by strong induction. That means that after introducing an arbitrary natural number n, we
assume the inductive hypothesis, which says ∀ n_1 < n, ∃ (q r : Nat), n_1 = m * q + r ∧ r
< m.

theorem Example_6_4_1 : ∀ m > 0, ∀ (n : Nat),
∃ (q r : Nat), n = m * q + r ∧ r < m := by

fix m : Nat

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

190

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

assume h1 : m > 0
by_strong_induc
fix n : Nat
assume ih : ∀ n_1 < n, ∃ (q r : Nat), n_1 = m * q + r ∧ r < m
::::
done

Our goal now is to prove that ∃ (q r : Nat), n = m * q + r ∧ r < m. Although strong
induction does not require a base case, it is not uncommon for proofs by strong induction to
involve reasoning by cases. The proof in HTPI uses cases based on whether or not n < m. If n
< m, then the proof is easy: the numbers q = 0 and r = n clearly have the required properties.
If ¬n < m, then we can write n as n = k + m, for some natural number k. Since m > 0, we
have k < n, so we can apply the inductive hypothesis to k. Notice that if m > 1, then k is not
the number immediately preceding n; that’s why this proof uses strong induction rather than
ordinary induction.

How do we come up with the number k in the previous paragraph? We’ll use a theorem from
Lean’s library. There are two slightly different versions of the theorem—notice that the first
ends with m + k and the second ends with k + m:

@Nat.exists_eq_add_of_le : ∀ {m n : ℕ}, m ≤ n → ∃ (k : ℕ), n = m + k

@Nat.exists_eq_add_of_le' : ∀ {m n : ℕ}, m ≤ n → ∃ (k : ℕ), n = k + m

We’ll use the second version in our proof.

theorem Example_6_4_1 : ∀ m > 0, ∀ (n : Nat),
∃ (q r : Nat), n = m * q + r ∧ r < m := by

fix m : Nat
assume h1 : m > 0
by_strong_induc
fix n : Nat
assume ih : ∀ n_1 < n, ∃ (q r : Nat), n_1 = m * q + r ∧ r < m
by_cases h2 : n < m
· -- Case 1. h2 : n < m

apply Exists.intro 0
apply Exists.intro n --Goal : n = m * 0 + n ∧ n < m
apply And.intro _ h2
ring
done

· -- Case 2. h2 : ¬n < m
have h3 : m ≤ n := by linarith
obtain (k : Nat) (h4 : n = k + m) from Nat.exists_eq_add_of_le' h3
have h5 : k < n := by linarith

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

191

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

have h6 : ∃ (q r : Nat), k = m * q + r ∧ r < m := ih k h5
obtain (q' : Nat)

(h7 : ∃ (r : Nat), k = m * q' + r ∧ r < m) from h6
obtain (r' : Nat) (h8 : k = m * q' + r' ∧ r' < m) from h7
apply Exists.intro (q' + 1)
apply Exists.intro r' --Goal : n = m * (q' + 1) + r' ∧ r' < m
apply And.intro _ h8.right
show n = m * (q' + 1) + r' from

calc n
_ = k + m := h4
_ = m * q' + r' + m := by rw [h8.left]
_ = m * (q' + 1) + r' := by ring

done
done

The numbers q and r in Example_6_4_1 are called the quotient and remainder when n is divided
by m. Lean knows how to compute these numbers: if n and m are natural numbers, then in
Lean, n / m denotes the quotient when n is divided by m, and n % m denotes the remainder.
(The number n % m is also sometimes called n modulo m, or n mod m.) And Lean knows theorems
stating that these numbers have the properties specified in Example_6_4_1:

@Nat.div_add_mod : ∀ (m n : ℕ), n * (m / n) + m % n = m

@Nat.mod_lt : ∀ (x : ℕ) {y : ℕ}, y > 0 → x % y < y

By the way, although we are unlikely to want to use the notation n / 0 or n % 0, Lean uses
the definitions n / 0 = 0 and n % 0 = n. As a result, the equation n * (m / n) + m % n = m
is true even if n = 0. That’s why the theorem Nat.div_add_mod doesn’t include a requirement
that n > 0. It is important to keep in mind that division of natural numbers is not the same as
division of real numbers. For example, dividing the natural number 5 by the natural number
2 gives a quotient of 2 (with a remainder of 1), so (5 : Nat) / (2 : Nat) is 2, but (5 : Real)
/ (2 : Real) is 2.5.

There is also a strong form of recursion. As an example of this, here is a recursive definition
of a sequence of numbers called the Fibonacci numbers:

def Fib (n : Nat) : Nat :=
match n with

| 0 => 0
| 1 => 1
| k + 2 => Fib k + Fib (k + 1)

Notice that the formula for Fib (k + 2) involves the two previous values of Fib, not just
the immediately preceding value. That is the sense in which the recursion is strong. Not

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

192

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

surprisingly, theorems about the Fibonacci numbers are often proven by induction—either
ordinary or strong. We’ll illustrate this with a proof by strong induction that ∀ (n : Nat), Fib
n < 2 ^ n. This time we’ll need to treat the cases n = 0 and n = 1 separately, since these values
are treated separately in the definition of Fib n. And we’ll need to know that if n doesn’t fall
into either of those cases, then it falls into the third case: n = k + 2 for some natural number
k. Since similar ideas will come up several times in the rest of this book, it will be useful to
begin by proving lemmas that will help with this kind of reasoning.

We’ll need two theorems from Lean’s library, the second of which has two slightly different
versions:

@Nat.pos_of_ne_zero : ∀ {n : ℕ}, n ≠ 0 → 0 < n

@lt_of_le_of_ne : ∀ {α : Type u_1} [inst : PartialOrder α] {a b : α},
a ≤ b → a ≠ b → a < b

@lt_of_le_of_ne' : ∀ {α : Type u_1} [inst : PartialOrder α] {a b : α},
a ≤ b → b ≠ a → a < b

If we have h1 : n ≠ 0, then Nat.pos_of_ne_zero h1 is a proof of 0 < n. But for natural
numbers a and b, Lean treats a < b as meaning the same thing as a + 1 ≤ b, so this is also
a proof of 1 ≤ n. If we also have h2 : n ≠ 1, then we can use lt_of_le_of_ne' to conclude
1 < n, which is definitionally equal to 2 ≤ n. Combining this reasoning with the theorem
Nat.exists_eq_add_of_le', which we used in the last example, we can prove two lemmas that
will be helpful for reasoning in which the first one or two natural numbers have to be treated
separately.

lemma exists_eq_add_one_of_ne_zero {n : Nat}
(h1 : n ≠ 0) : ∃ (k : Nat), n = k + 1 := by

have h2 : 1 ≤ n := Nat.pos_of_ne_zero h1
show ∃ (k : Nat), n = k + 1 from Nat.exists_eq_add_of_le' h2
done

theorem exists_eq_add_two_of_ne_zero_one {n : Nat}
(h1 : n ≠ 0) (h2 : n ≠ 1) : ∃ (k : Nat), n = k + 2 := by

have h3 : 1 ≤ n := Nat.pos_of_ne_zero h1
have h4 : 2 ≤ n := lt_of_le_of_ne' h3 h2
show ∃ (k : Nat), n = k + 2 from Nat.exists_eq_add_of_le' h4
done

With this preparation, we can present the proof:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

193

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

example : ∀ (n : Nat), Fib n < 2 ^ n := by
by_strong_induc
fix n : Nat
assume ih : ∀ n_1 < n, Fib n_1 < 2 ^ n_1
by_cases h1 : n = 0
· -- Case 1. h1 : n = 0

rewrite [h1] --Goal : Fib 0 < 2 ^ 0
decide
done

· -- Case 2. h1 : ¬n = 0
by_cases h2 : n = 1
· -- Case 2.1. h2 : n = 1

rewrite [h2]
decide
done

· -- Case 2.2. h2 : ¬n = 1
obtain (k : Nat) (h3 : n = k + 2) from

exists_eq_add_two_of_ne_zero_one h1 h2
have h4 : k < n := by linarith
have h5 : Fib k < 2 ^ k := ih k h4
have h6 : k + 1 < n := by linarith
have h7 : Fib (k + 1) < 2 ^ (k + 1) := ih (k + 1) h6
rewrite [h3] --Goal : Fib (k + 2) < 2 ^ (k + 2)
show Fib (k + 2) < 2 ^ (k + 2) from

calc Fib (k + 2)
_ = Fib k + Fib (k + 1) := by rfl
_ < 2 ^ k + Fib (k + 1) := by rel [h5]
_ < 2 ^ k + 2 ^ (k + 1) := by rel [h7]
_ ≤ 2 ^ k + 2 ^ (k + 1) + 2 ^ k := by linarith
_ = 2 ^ (k + 2) := by ring

done
done

done

As with ordinary induction, strong induction can be useful for proving statements that do not
at first seem to have the form ∀ (n : Nat), To illustrate this, we’ll prove the well-ordering
principle, which says that if a set S : Set Nat is nonempty, then it has a smallest element.
We’ll prove the contrapositive: if S has no smallest element, then it is empty. To say that S
is empty means ∀ (n : Nat), n ∉ S, and that’s the statement to which we will apply strong
induction.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

194

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

theorem well_ord_princ (S : Set Nat) : (∃ (n : Nat), n ∈ S) →
∃ n ∈ S, ∀ m ∈ S, n ≤ m := by

contrapos
assume h1 : ¬∃ n ∈ S, ∀ m ∈ S, n ≤ m
quant_neg --Goal : ∀ (n : Nat), n ∉ S
by_strong_induc
fix n : Nat
assume ih : ∀ n_1 < n, n_1 ∉ S --Goal : n ∉ S
contradict h1 with h2 --h2 : n ∈ S

--Goal : ∃ n ∈ S, ∀ m ∈ S, n ≤ m
apply Exists.intro n --Goal : n ∈ S ∧ ∀ m ∈ S, n ≤ m
apply And.intro h2 --Goal : ∀ m ∈ S, n ≤ m
fix m : Nat
assume h3 : m ∈ S
have h4 : m < n → m ∉ S := ih m
contrapos at h4 --h4 : m ∈ S → ¬m < n
have h5 : ¬m < n := h4 h3
linarith
done

Section 6.4 of HTPI ends with an example of an application of the well-ordering principle.
The example gives a proof that

√
2 is irrational. If

√
2 were rational, then there would be

natural numbers 𝑝 and 𝑞 such that 𝑞 ≠ 0 and 𝑝/𝑞 =
√

2, and therefore 𝑝2 = 2𝑞2. So we can
prove that

√
2 is irrational by showing that there do not exist natural numbers 𝑝 and 𝑞 such

that 𝑞 ≠ 0 and 𝑝2 = 2𝑞2.

The proof uses a definition from the exercises of Section 6.1:

def nat_even (n : Nat) : Prop := ∃ (k : Nat), n = 2 * k

We will also use the following lemma, whose proof we leave as an exercise for you:

lemma sq_even_iff_even (n : Nat) : nat_even (n * n) ↔ nat_even n := sorry

And we’ll need another theorem that we haven’t seen before:

@mul_left_cancel_iff_of_pos : ∀ {α : Type u_1} {a b c : α}
[inst : MulZeroClass α] [inst_1 : PartialOrder α]
[inst_2 : PosMulReflectLE α],
0 < a → (a * b = a * c ↔ b = c)

To show that
√

2 is irrational, we will prove the statement

¬∃ (q p : Nat), p * p = 2 * (q * q) ∧ q ≠ 0

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

195

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

We proceed by contradiction. If this statement were false, then the set

S = {q : Nat | ∃ (p : Nat), p * p = 2 * (q * q) ∧ q ≠ 0}

would be nonempty, and therefore, by the well-ordering principle, it would have a smallest
element. We then show that this leads to a contradiction. Here is the proof.

theorem Theorem_6_4_5 :
¬∃ (q p : Nat), p * p = 2 * (q * q) ∧ q ≠ 0 := by

set S : Set Nat :=
{q : Nat | ∃ (p : Nat), p * p = 2 * (q * q) ∧ q ≠ 0}

by_contra h1
have h2 : ∃ (q : Nat), q ∈ S := h1
have h3 : ∃ q ∈ S, ∀ r ∈ S, q ≤ r := well_ord_princ S h2
obtain (q : Nat) (h4 : q ∈ S ∧ ∀ r ∈ S, q ≤ r) from h3
have qinS : q ∈ S := h4.left
have qleast : ∀ r ∈ S, q ≤ r := h4.right
define at qinS --qinS : ∃ (p : Nat), p * p = 2 * (q * q) ∧ q ≠ 0
obtain (p : Nat) (h5 : p * p = 2 * (q * q) ∧ q ≠ 0) from qinS
have pqsqrt2 : p * p = 2 * (q * q) := h5.left
have qne0 : q ≠ 0 := h5.right
have h6 : nat_even (p * p) := Exists.intro (q * q) pqsqrt2
rewrite [sq_even_iff_even p] at h6 --h6 : nat_even p
obtain (p' : Nat) (p'halfp : p = 2 * p') from h6
have h7 : 2 * (2 * (p' * p')) = 2 * (q * q) := by

rewrite [←pqsqrt2, p'halfp]
ring
done

have h8 : 2 > 0 := by decide
rewrite [mul_left_cancel_iff_of_pos h8] at h7

--h7 : 2 * (p' * p') = q * q
have h9 : nat_even (q * q) := Exists.intro (p' * p') h7.symm
rewrite [sq_even_iff_even q] at h9 --h9 : nat_even q
obtain (q' : Nat) (q'halfq : q = 2 * q') from h9
have h10 : 2 * (p' * p') = 2 * (2 * (q' * q')) := by

rewrite [h7, q'halfq]
ring
done

rewrite [mul_left_cancel_iff_of_pos h8] at h10
--h10 : p' * p' = 2 * (q' * q')

have q'ne0 : q' ≠ 0 := by
contradict qne0 with h11
rewrite [q'halfq, h11]

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

196

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

rfl
done

have q'inS : q' ∈ S := Exists.intro p' (And.intro h10 q'ne0)
have qleq' : q ≤ q' := qleast q' q'inS
rewrite [q'halfq] at qleq' --qleq' : 2 * q' ≤ q'
contradict q'ne0
linarith
done

Exercises

1. --Hint: Use Exercise_6_1_16a1 and Exercise_6_1_16a2
--from the exercises of Section 6.1.
lemma sq_even_iff_even (n : Nat) :

nat_even (n * n) ↔ nat_even n := sorry

2. --This theorem proves that the square root of 6 is irrational
theorem Exercise_6_4_4a :

¬∃ (q p : Nat), p * p = 6 * (q * q) ∧ q ≠ 0 := sorry

3. theorem Exercise_6_4_5 :
∀ n ≥ 12, ∃ (a b : Nat), 3 * a + 7 * b = n := sorry

4. theorem Exercise_6_4_7a : ∀ (n : Nat),
(Sum i from 0 to n, Fib i) + 1 = Fib (n + 2) := sorry

5. theorem Exercise_6_4_7c : ∀ (n : Nat),
Sum i from 0 to n, Fib (2 * i + 1) = Fib (2 * n + 2) := sorry

6. theorem Exercise_6_4_8a : ∀ (m n : Nat),
Fib (m + n + 1) = Fib m * Fib n + Fib (m + 1) * Fib (n + 1) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

197

https://doi.org/10.1017/9781108539890

6.4. Strong Induction

7. theorem Exercise_6_4_8d : ∀ (m k : Nat), Fib m ∣ Fib (m * k) := sorry

Hint for #7: Let m be an arbitrary natural number, and then use induction on k. For the
induction step, you must prove Fib m ∣ Fib (m * (k + 1)). If m = 0 ∨ k = 0, then this
is easy. If not, then use exists_eq_add_one_of_ne_zero to obtain a natural number j such
that m * k = j + 1, and therefore m * (k + 1) = j + m + 1, and then apply Exercise_6_4_8a.

8. def Fib_like (n : Nat) : Nat :=
match n with

| 0 => 1
| 1 => 2
| k + 2 => 2 * (Fib_like k) + Fib_like (k + 1)

theorem Fib_like_formula : ∀ (n : Nat), Fib_like n = 2 ^ n := sorry

9. def triple_rec (n : Nat) : Nat :=
match n with

| 0 => 0
| 1 => 2
| 2 => 4
| k + 3 => 4 * triple_rec k +

6 * triple_rec (k + 1) + triple_rec (k + 2)

theorem triple_rec_formula :
∀ (n : Nat), triple_rec n = 2 ^ n * Fib n := sorry

10. In this exercise you will prove that the numbers q and r in Example_6_4_1 are unique. It is
helpful to prove a lemma first.

lemma quot_rem_unique_lemma {m q r q' r' : Nat}
(h1 : m * q + r = m * q' + r') (h2 : r' < m) : q ≤ q' := sorry

theorem quot_rem_unique (m q r q' r' : Nat)
(h1 : m * q + r = m * q' + r') (h2 : r < m) (h3 : r' < m) :
q = q' ∧ r = r' := sorry

11. Use the theorem in the previous exercise to prove the following characterization of n / m
and n % m.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

198

https://doi.org/10.1017/9781108539890

6.5. Closures Again

theorem div_mod_char (m n q r : Nat)
(h1 : n = m * q + r) (h2 : r < m) : q = n / m ∧ r = n % m := sorry

6.5. Closures Again

Section 6.5 of HTPI gives one more application of recursion and induction: another proof of
the existence of closures of sets under functions. Recall from Section 5.4 that if f : A → A and
B : Set A, then the closure of B under f is the smallest set containing B that is closed under
f. In Section 5.4, we constructed the closure of B under f by taking the intersection of all sets
containing B that are closed under f. In this section, we construct the closure by starting with
the set B and repeatedly taking the image under f. For the motivation for this strategy, see
HTPI ; here we focus on how to carry out this strategy in Lean.

To talk about repeatedly taking the image of a set under a function, we will need a recursive
definition:

def rep_image {A : Type} (f : A → A) (n : Nat) (B : Set A) : Set A :=
match n with

| 0 => B
| k + 1 => image f (rep_image f k B)

According to this definition, rep_image f 0 B = B, rep_image f 1 B = image f B, rep_image f 2 B
= image f (image f B), and so on. In other words, rep_image f n B is the result of starting with
B and then taking the image under f n times. To make it easier to work with this definition,
we state two simple theorems, both of which follow immediately from the definition.

theorem rep_image_base {A : Type} (f : A → A) (B : Set A) :
rep_image f 0 B = B := by rfl

theorem rep_image_step {A : Type} (f : A → A) (n : Nat) (B : Set A) :
rep_image f (n + 1) B = image f (rep_image f n B) := by rfl

We will prove that the closure of B under f is the union of the sets rep_image f n B. We will
call this the cumulative image of B under f, and we define it as follows:

def cumul_image {A : Type} (f : A → A) (B : Set A) : Set A :=
{x : A | ∃ (n : Nat), x ∈ rep_image f n B}

To prove that cumul_image f B is the closure of B under f, we first prove a lemma saying that
if B ⊆ D and D is closed under f, then for every natural number n, rep_image f n B ⊆ D. We
prove it by induction.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

199

https://doi.org/10.1017/9781108539890

6.5. Closures Again

lemma rep_image_sub_closed {A : Type} {f : A → A} {B D : Set A}
(h1 : B ⊆ D) (h2 : closed f D) :
∀ (n : Nat), rep_image f n B ⊆ D := by

by_induc
· -- Base Case

rewrite [rep_image_base] --Goal : B ⊆ D
show B ⊆ D from h1
done

· -- Induction Step
fix n : Nat
assume ih : rep_image f n B ⊆ D --Goal : rep_image f (n + 1) B ⊆ D
fix x : A
assume h3 : x ∈ rep_image f (n + 1) B --Goal : x ∈ D
rewrite [rep_image_step] at h3
define at h3 --h3 : ∃ x_1 ∈ rep_image f n B, f x_1 = x
obtain (b : A) (h4 : b ∈ rep_image f n B ∧ f b = x) from h3
rewrite [←h4.right] --Goal : f b ∈ D
have h5 : b ∈ D := ih h4.left
define at h2 --h2 : ∀ x ∈ D, f x ∈ D
show f b ∈ D from h2 b h5
done

done

With this preparation, we can now prove that cumul_image f B is the closure of B under f.

theorem Theorem_6_5_1 {A : Type} (f : A → A) (B : Set A) :
closure f B (cumul_image f B) := by

define
apply And.intro
· -- Proof that cumul_image f B ∈ {D : Set A | B ⊆ D ∧ closed f D}

define --Goal : B ⊆ cumul_image f B ∧ closed f (cumul_image f B)
apply And.intro
· -- Proof that B ⊆ cumul_image f B

fix x : A
assume h1 : x ∈ B
define --Goal : ∃ (n : Nat), x ∈ rep_image f n B
apply Exists.intro 0
rewrite [rep_image_base] --Goal : x ∈ B
show x ∈ B from h1
done

· -- Proof that cumul_image f B closed under f
define

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

200

https://doi.org/10.1017/9781108539890

6.5. Closures Again

fix x : A
assume h1 : x ∈ cumul_image f B --Goal : f x ∈ cumul_image f B
define at h1
obtain (m : Nat) (h2 : x ∈ rep_image f m B) from h1
define --Goal : ∃ (n : Nat), f x ∈ rep_image f n B
apply Exists.intro (m + 1) --Goal : f x ∈ rep_image f (m + 1) B
rewrite [rep_image_step] --Goal : f x ∈ image f (rep_image f m B)
define --Goal : ∃ x_1 ∈ rep_image f m B, f x_1 = f x
apply Exists.intro x --Goal : x ∈ rep_image f m B ∧ f x = f x
apply And.intro h2
rfl
done

done
· -- Proof that cumul_image f B is smallest

fix D : Set A
assume h1 : D ∈ {D : Set A | B ⊆ D ∧ closed f D}
define at h1 --h1 : B ⊆ D ∧ closed f D
define --Goal : ∀ ⦃a : A⦄, a ∈ cumul_image f B → a ∈ D
fix x : A
assume h2 : x ∈ cumul_image f B --Goal : x ∈ D
define at h2 --h2: ∃ (n : Nat), x ∈ rep_image f n B
obtain (m : Nat) (h3 : x ∈ rep_image f m B) from h2
have h4 : rep_image f m B ⊆ D :=

rep_image_sub_closed h1.left h1.right m
show x ∈ D from h4 h3
done

done

Exercises

1. Recall the following definitions from the exercises of Section 5.4:

def closed_family {A : Type} (F : Set (A → A)) (C : Set A) : Prop :=
∀ f ∈ F, closed f C

def closure_family {A : Type} (F : Set (A → A)) (B C : Set A) : Prop :=
smallestElt (sub A) C {D : Set A | B ⊆ D ∧ closed_family F D}

These definitions say that a set is closed under a family of functions if it is closed under all
of the functions in the family, and the closure of a set B under a family of functions is the
smallest set containing B that is closed under the family.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

201

https://doi.org/10.1017/9781108539890

6.5. Closures Again

In this exercise we will use the following additional definitions:

def rep_image_family {A : Type}
(F : Set (A → A)) (n : Nat) (B : Set A) : Set A :=

match n with
| 0 => B
| k + 1 => {x : A | ∃ f ∈ F, x ∈ image f (rep_image_family F k B)}

def cumul_image_family {A : Type}
(F : Set (A → A)) (B : Set A) : Set A :=

{x : A | ∃ (n : Nat), x ∈ rep_image_family F n B}

The following theorems establish that if F : Set (A → A) and B : Set A, then cumul_image_family
F B is the closure of B under F. The first two are proven by rfl; the other two are for you to
prove.

theorem rep_image_family_base {A : Type}
(F : Set (A → A)) (B : Set A) : rep_image_family F 0 B = B := by rfl

theorem rep_image_family_step {A : Type}
(F : Set (A → A)) (n : Nat) (B : Set A) :
rep_image_family F (n + 1) B =
{x : A | ∃ f ∈ F, x ∈ image f (rep_image_family F n B)} := by rfl

lemma rep_image_family_sub_closed {A : Type}
(F : Set (A → A)) (B D : Set A)
(h1 : B ⊆ D) (h2 : closed_family F D) :
∀ (n : Nat), rep_image_family F n B ⊆ D := sorry

theorem Exercise_6_5_3 {A : Type} (F : Set (A → A)) (B : Set A) :
closure_family F B (cumul_image_family F B) := sorry

The next two exercises concern the following two definitions from Section 5.4:

def closed2 {A : Type} (f : A → A → A) (C : Set A) : Prop :=
∀ x ∈ C, ∀ y ∈ C, f x y ∈ C

def closure2 {A : Type} (f : A → A → A) (B C : Set A) : Prop :=
smallestElt (sub A) C {D : Set A | B ⊆ D ∧ closed2 f D}

They also use the following definition, which extends the idea of the image of a set under a
function to functions of two variables:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

202

https://doi.org/10.1017/9781108539890

6.5. Closures Again

def image2 {A : Type} (f : A → A → A) (B : Set A) : Set A :=
{z : A | ∃ (x y : A), x ∈ B ∧ y ∈ B ∧ z = f x y}

2. A natural way to try to find the closure of a set under a function of two variables would be
to use the following definitions and theorems:

def rep_image2 {A : Type}
(f : A → A → A) (n : Nat) (B : Set A) : Set A :=

match n with
| 0 => B
| k + 1 => image2 f (rep_image2 f k B)

theorem rep_image2_base {A : Type} (f : A → A → A) (B : Set A) :
rep_image2 f 0 B = B := by rfl

theorem rep_image2_step {A : Type}
(f : A → A → A) (n : Nat) (B : Set A) :
rep_image2 f (n + 1) B = image2 f (rep_image2 f n B) := by rfl

def cumul_image2 {A : Type} (f : A → A → A) (B : Set A) : Set A :=
{x : A | ∃ (n : Nat), x ∈ rep_image2 f n B}

We could now try to prove that if f : A → A → A and B : Set A, then cumul_image2 f B is the
closure of B under f. However, this approach doesn’t work, because cumul_image2 f B might
not be closed under f.

Here is an incorrect informal argument that cumul_image2 f B is closed under f. Suppose x
and y are elements of cumul_image2 f B. This means that we can choose some natural number
n such that x ∈ rep_image2 f n B and y ∈ rep_image2 f n B. This implies that f x y ∈ image2
f (rep_image2 f n B) = rep_image2 f (n + 1) B, so f x y ∈ cumul_image2 f B.

Find the mistake in this informal argument by trying to turn it into a proof in Lean:

--You won't be able to complete this proof
theorem Exercise_6_5_6 {A : Type} (f : A → A → A) (B : Set A) :

closed2 f (cumul_image2 f B) := sorry

3. In this exercise, we fix the mistake in the attempted proof in the previous exercise. Instead
of repeatedly taking the image of a set, we repeatedly take the union of a set with its image:

def un_image2 {A : Type} (f : A → A → A) (B : Set A) : Set A :=
B ∪ (image2 f B)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

203

https://doi.org/10.1017/9781108539890

6.5. Closures Again

def rep_un_image2 {A : Type}
(f : A → A → A) (n : Nat) (B : Set A) : Set A :=

match n with
| 0 => B
| k + 1 => un_image2 f (rep_un_image2 f k B)

theorem rep_un_image2_base {A : Type} (f : A → A → A) (B : Set A) :
rep_un_image2 f 0 B = B := by rfl

theorem rep_un_image2_step {A : Type}
(f : A → A → A) (n : Nat) (B : Set A) :
rep_un_image2 f (n + 1) B =
un_image2 f (rep_un_image2 f n B) := by rfl

def cumul_un_image2 {A : Type}
(f : A → A → A) (B : Set A) : Set A :=

{x : A | ∃ (n : Nat), x ∈ rep_un_image2 f n B}

Now prove that if f : A → A → A and B : Set A, then cumul_un_image2 f B is the closure of B
under f by completing the following proofs:

theorem Exercise_6_5_8a {A : Type} (f : A → A → A) (B : Set A) :
∀ (m n : Nat), m ≤ n →
rep_un_image2 f m B ⊆ rep_un_image2 f n B := sorry

lemma rep_un_image2_sub_closed {A : Type} {f : A → A → A} {B D : Set A}
(h1 : B ⊆ D) (h2 : closed2 f D) :
∀ (n : Nat), rep_un_image2 f n B ⊆ D := sorry

lemma closed_lemma
{A : Type} {f : A → A → A} {B : Set A} {x y : A} {nx ny n : Nat}
(h1 : x ∈ rep_un_image2 f nx B) (h2 : y ∈ rep_un_image2 f ny B)
(h3 : nx ≤ n) (h4 : ny ≤ n) :
f x y ∈ cumul_un_image2 f B := sorry

theorem Exercise_6_5_8b {A : Type} (f : A → A → A) (B : Set A) :
closure2 f B (cumul_un_image2 f B) := sorry

The remaining exercises in this section use the following definitions:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

204

https://doi.org/10.1017/9781108539890

6.5. Closures Again

def idExt (A : Type) : Set (A × A) := {(x, y) : A × A | x = y}

def rep_comp {A : Type} (R : Set (A × A)) (n : Nat) : Set (A × A) :=
match n with

| 0 => idExt A
| k + 1 => comp (rep_comp R k) R

def cumul_comp {A : Type} (R : Set (A × A)) : Set (A × A) :=
{(x, y) : A × A | ∃ n ≥ 1, (x, y) ∈ rep_comp R n}

4. theorem rep_comp_one {A : Type} (R : Set (A × A)) :
rep_comp R 1 = R := sorry

5. theorem Exercise_6_5_11 {A : Type} (R : Set (A × A)) :
∀ (m n : Nat), rep_comp R (m + n) =
comp (rep_comp R m) (rep_comp R n) := sorry

6. lemma rep_comp_sub_trans {A : Type} {R S : Set (A × A)}
(h1 : R ⊆ S) (h2 : transitive (RelFromExt S)) :
∀ n ≥ 1, rep_comp R n ⊆ S := sorry

7. theorem Exercise_6_5_14 {A : Type} (R : Set (A × A)) :
smallestElt (sub (A × A)) (cumul_comp R)
{S : Set (A × A) | R ⊆ S ∧ transitive (RelFromExt S)} := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

205

https://doi.org/10.1017/9781108539890

7 Number Theory

7.1. Greatest Common Divisors

The proofs in this chapter and the next are significantly longer than those in previous chapters.
As a result, we will skip some details in the text, leaving proofs of a number of theorems as
exercises for you. The most interesting of these exercises are included in the exercise lists at
the ends of the sections; for the rest, you can compare your solutions to proofs that can be
found in the Lean package that accompanies this book. Also, we will occasionally use theorems
that we have not used before without explanation. If necessary, you can use #check to look up
what they say.

Section 7.1 of HTPI introduces the Euclidean algorithm for computing the greatest common
divisor (gcd) of two positive integers 𝑎 and 𝑏. The motivation for the algorithm is the fact
that if 𝑟 is the remainder when 𝑎 is divided by 𝑏, then any natural number that divides both
𝑎 and 𝑏 also divides 𝑟, and any natural number that divides both 𝑏 and 𝑟 also divides 𝑎.
Let’s prove these statements in Lean. Recall that in Lean, the remainder when a is divided
by b is called a mod b, and it is denoted a % b. We’ll prove the first statement, and leave
the second as an exercise for you. It will be convenient for our work with greatest common
divisors in Lean to let a and b be natural numbers rather than positive integers (thus allowing
either of them to be zero).

theorem dvd_mod_of_dvd_a_b {a b d : Nat}
(h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by

set q : Nat := a / b
have h3 : b * q + a % b = a := Nat.div_add_mod a b
obtain (j : Nat) (h4 : a = d * j) from h1
obtain (k : Nat) (h5 : b = d * k) from h2
define --Goal : ∃ (c : Nat), a % b = d * c
apply Exists.intro (j - k * q)
show a % b = d * (j - k * q) from

calc a % b
_ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm
_ = a - b * q := by rw [h3]
_ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc]

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

206

https://doi.org/10.1017/9781108539890

7.1. Greatest Common Divisors

_ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm
done

theorem dvd_a_of_dvd_b_mod {a b d : Nat}
(h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry

These theorems tell us that the gcd of a and b is the same as the gcd of b and a % b, which
suggests that the following recursive definition should compute the gcd of a and b:

def
:::
gcd (a b : Nat) : Nat :=

match b with
| 0 => a
| n + 1 => gcd (n + 1) (a % (n + 1))

Unfortunately, Lean puts a red squiggle under gcd, and it displays in the Infoview a long error
message that begins fail to show termination. What is Lean complaining about?

The problem is that recursive definitions are dangerous. To understand the danger, consider
the following recursive definition:

def loop (n : Nat) : Nat := loop (n + 1)

Suppose we try to use this definition to compute loop 3. The definition would lead us to
perform the following calculation:

loop 3 = loop 4 = loop 5 = loop 6 = ...

Clearly this calculation will go on forever and will never produce an answer. So the definition
of loop does not actually succeed in defining a function from Nat to Nat.

Lean insists that recursive definitions must avoid such nonterminating calculations. Why did it
accept all of our previous recursive definitions? The reason is that in each case, the definition
of the value of the function at a natural number n referred only to values of the function at
numbers smaller than n. Since a decreasing list of natural numbers cannot go on forever, such
definitions lead to calculations that are guaranteed to terminate.

What about our recursive definition of gcd a b? This function has two arguments, a and b,
and when b = n + 1, the definition asks us to compute gcd (n + 1) (a % (n + 1)). The first
argument here could actually be larger than the first argument in the value we are trying to
compute, gcd a b. But the second argument will always be smaller, and that will suffice to
guarantee that the calculation terminates. We can tell Lean to focus on the second argument
b by adding a termination_by clause to the end of our recursive definition:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

207

https://doi.org/10.1017/9781108539890

7.1. Greatest Common Divisors

def gcd (a b : Nat) : Nat :=
match b with

| 0 => a
| n + 1 =>

::::
gcd

:::
(n

::
+

:::
1)

:::
(a

::
%
:::
(n

::
+
::::
1))

termination_by b

Unfortunately, Lean still isn’t satisfied, but the error message this time is more helpful. The
message says that Lean failed to prove termination, and at the end of the message it says that
the goal it failed to prove is a % (n + 1) < n + 1, which is precisely what is needed to show
that the second argument of gcd (n + 1) (a % (n + 1)) is smaller than the second argument
of gcd a b when b = n + 1. We’ll need to provide a proof of this goal to convince Lean to
accept our recursive definition. Fortunately, it’s not hard to prove:

lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by
have h : n + 1 > 0 := Nat.succ_pos n
show a % (n + 1) < n + 1 from Nat.mod_lt a h
done

Lean’s error message suggests several ways to fix the problem with our recursive definition.
We’ll use the first suggestion: Use `have`-expressions to prove the remaining goals. Here,
finally, is the definition of gcd that Lean is willing to accept. (You can ignore the initial line
@[semireducible]. For technical reasons that we won’t go into, this line is needed to make
this complicated recursive definition work in proofs the same way that our previous, simpler
recursive definitions did.)

@[semireducible]
def gcd (a b : Nat) : Nat :=
match b with

| 0 => a
| n + 1 =>

have : a % (n + 1) < n + 1 := mod_succ_lt a n
gcd (n + 1) (a % (n + 1))

termination_by b

Notice that in the have expression, we have not bothered to specify an identifier for the assertion
being proven, since we never need to refer to it. Let’s try out our gcd function:

:::::
#eval gcd 672 161 --Answer: 7. Note 672 = 7 * 96 and 161 = 7 * 23.

To establish the main properties of gcd a b we’ll need several lemmas. We prove some of them
and leave others as exercises.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

208

https://doi.org/10.1017/9781108539890

7.1. Greatest Common Divisors

lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl

lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) :
gcd a b = gcd b (a % b) := by

obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h
rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1))
rfl
done

lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := sorry

lemma dvd_self (n : Nat) : n ∣ n := sorry

One of the most important properties of gcd a b is that it divides both a and b. We prove it
by strong induction on b.

theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by
by_strong_induc
fix b : Nat
assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1
fix a : Nat
by_cases h1 : b = 0
· -- Case 1. h1 : b = 0

rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0
apply And.intro (dvd_self a)
define
apply Exists.intro 0
rfl
done

· -- Case 2. h1 : b ≠ 0
rewrite [gcd_nonzero a h1]

--Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b
have h2 : a % b < b := mod_nonzero_lt a h1
have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) :=

ih (a % b) h2 b
apply And.intro _ h3.left
show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right
done

done

You may wonder why we didn’t start the proof like this:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

209

https://doi.org/10.1017/9781108539890

7.1. Greatest Common Divisors

theorem gcd_dvd : ∀ (a b : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by
fix a : Nat
by_strong_induc
fix b : Nat
assume ih : ∀ b_1 < b, (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1

In fact, this approach wouldn’t have worked. It is an interesting exercise to try to complete
this version of the proof and see why it fails.

Another interesting question is why we asserted both (gcd a b) ∣ a and (gcd a b) ∣ b in the
same theorem. Wouldn’t it have been easier to give separate proofs of the statements ∀ (b a :
Nat), (gcd a b) ∣ a and ∀ (b a : Nat), (gcd a b) ∣ b? Again, you might find it enlightening
to see why that wouldn’t have worked. However, now that we have proven both divisibility
statements, we can state them as separate theorems:

theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left

theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right

Next we turn to Theorem 7.1.4 in HTPI, which says that there are integers 𝑠 and 𝑡 such that
gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏. (We say that gcd(𝑎, 𝑏) can be written as a linear combination of 𝑎 and 𝑏.)
In HTPI, this is proven by using an extended version of the Euclidean algorithm to compute
the coefficients 𝑠 and 𝑡. Here we will use a different recursive procedure to compute 𝑠 and
𝑡. If 𝑏 = 0, then gcd(𝑎, 𝑏) = 𝑎 = 1 ⋅ 𝑎 + 0 ⋅ 𝑏, so we can use the values 𝑠 = 1 and 𝑡 = 0.
Otherwise, let 𝑞 and 𝑟 be the quotient and remainder when 𝑎 is divided by 𝑏. Then 𝑎 = 𝑏𝑞 + 𝑟
and gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟). Now suppose that we have already computed integers 𝑠′ and 𝑡′ such
that

gcd(𝑏, 𝑟) = 𝑠′𝑏 + 𝑡′𝑟.
Then

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟) = 𝑠′𝑏 + 𝑡′𝑟
= 𝑠′𝑏 + 𝑡′(𝑎 − 𝑏𝑞) = 𝑡′𝑎 + (𝑠′ − 𝑡′𝑞)𝑏.

Thus, to write gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏 we can use the values

𝑠 = 𝑡′, 𝑡 = 𝑠′ − 𝑡′𝑞. (∗)

We will use these equations as the basis for recursive definitions of Lean functions gcd_c1 and
gcd_c2 such that the required coefficients can be obtained from the formulas s = gcd_c1 a b
and t = gcd_c2 a b. Notice that s and t could be negative, so they must have type Int, not
Nat. As a result, in definitions and theorems involving gcd_c1 and gcd_c2 we will sometimes
have to deal with coercion of natural numbers to integers.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

210

https://doi.org/10.1017/9781108539890

7.1. Greatest Common Divisors

The functions gcd_c1 and gcd_c2 will be mutually recursive; in other words, each will be defined
not only in terms of itself but also in terms of the other. Fortunately, Lean allows for such
mutual recursion. Here are the definitions we will use.

mutual
@[semireducible]
def gcd_c1 (a b : Nat) : Int :=

match b with
| 0 => 1
| n + 1 =>

have : a % (n + 1) < n + 1 := mod_succ_lt a n
gcd_c2 (n + 1) (a % (n + 1))

--Corresponds to s = t'
termination_by b

@[semireducible]
def gcd_c2 (a b : Nat) : Int :=

match b with
| 0 => 0
| n + 1 =>

have : a % (n + 1) < n + 1 := mod_succ_lt a n
gcd_c1 (n + 1) (a % (n + 1)) -

(gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1))
--Corresponds to t = s' - t'q

termination_by b
end

Notice that in the definition of gcd_c2, the quotient a / (n + 1) is computed using natural-
number division, but it is then coerced to be an integer so that it can be multiplied by the
integer gcd_c2 (n + 1) (a % (n + 1)).

Our main theorem about these functions is that they give the coefficients needed to write gcd
a b as a linear combination of a and b. As usual, stating a few lemmas first helps with the
proof. We leave the proofs of two of them as exercises for you (hint: imitate the proof of
gcd_nonzero above).

lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl

lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) :
gcd_c1 a b = gcd_c2 b (a % b) := sorry

lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

211

https://doi.org/10.1017/9781108539890

7.1. Greatest Common Divisors

lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) :
gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := sorry

With that preparation, we are ready to prove that gcd_c1 a b and gcd_c2 a b give coefficients
for expressing gcd a b as a linear combination of a and b. Of course, the theorem is proven
by strong induction. For clarity, we’ll write the coercions explicitly in this proof. We’ll make
a few comments after the proof that may help you follow the details.

theorem gcd_lin_comb : ∀ (b a : Nat),
(gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by

by_strong_induc
fix b : Nat
assume ih : ∀ b_1 < b, ∀ (a : Nat),

(gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1)
fix a : Nat
by_cases h1 : b = 0
· -- Case 1. h1 : b = 0

rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base]
--Goal : 1 * ↑a + 0 * ↑0 = ↑a

ring
done

· -- Case 2. h1 : b ≠ 0
rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1]

--Goal : gcd_c2 b (a % b) * ↑a +
-- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b =
-- ↑(gcd b (a % b))

set r : Nat := a % b
set q : Nat := a / b
set s : Int := gcd_c1 b r
set t : Int := gcd_c2 b r

--Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r)
have h2 : r < b := mod_nonzero_lt a h1
have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b
have h4 : b * q + r = a := Nat.div_add_mod a b
rewrite [←h3, ←h4]
rewrite [Nat.cast_add, Nat.cast_mul]

--Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r
ring
done

done

In case 2, we have introduced the variables r, q, s, and t to simplify the notation. Notice that

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

212

https://doi.org/10.1017/9781108539890

7.1. Greatest Common Divisors

the set tactic automatically plugs in this notation in the goal. After the step rewrite [←h3,
←h4], the goal contains the expression ↑(b * q + r). You can use the #check command to see
why Nat.cast_add and Nat.cast_mul convert this expression to first ↑(b * q) + ↑r and then
↑b * ↑q + ↑r. Without those steps, the ring tactic would not have been able to complete the
proof.

We can try out the functions gcd_c1 and gcd_c2 as follows:

:::::
#eval gcd_c1 672 161 --Answer: 6
:::::
#eval gcd_c2 672 161 --Answer: -25
--Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161

Finally, we turn to Theorem 7.1.6 in HTPI, which expresses one of the senses in which gcd
a b is the greatest common divisor of a and b. Our proof follows the strategy of the proof in
HTPI, with one additional step: we begin by using the theorem Int.natCast_dvd_natCast to
change the goal from d ∣ gcd a b to ↑d ∣ ↑(gcd a b) (where the coercions are from Nat to
Int), so that the rest of the proof can work with integer algebra rather than natural-number
algebra.

theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) :
d ∣ gcd a b := by

rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b)
set s : Int := gcd_c1 a b
set t : Int := gcd_c2 a b
have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a
rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b
obtain (j : Nat) (h4 : a = d * j) from h1
obtain (k : Nat) (h5 : b = d * k) from h2
rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul]

--Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k)
define
apply Exists.intro (s * ↑j + t * ↑k)
ring
done

We will ask you in the exercises to prove that, among the common divisors of a and b, gcd a
b is the greatest with respect to the usual ordering of the natural numbers (as long as gcd a
b ≠ 0).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

213

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

Exercises

1. theorem dvd_a_of_dvd_b_mod {a b d : Nat}
(h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry

2. lemma gcd_comm_lt {a b : Nat} (h : a < b) : gcd a b = gcd b a := sorry

theorem gcd_comm (a b : Nat) : gcd a b = gcd b a := sorry

3. theorem Exercise_7_1_5 (a b : Nat) (n : Int) :
(∃ (s t : Int), s * a + t * b = n) ↔ (↑(gcd a b) : Int) ∣ n := sorry

4. theorem Exercise_7_1_6 (a b c : Nat) :
gcd a b = gcd (a + b * c) b := sorry

5. theorem gcd_is_nonzero {a b : Nat} (h : a ≠ 0 ∨ b ≠ 0) :
gcd a b ≠ 0 := sorry

6. theorem gcd_greatest {a b d : Nat} (h1 : gcd a b ≠ 0)
(h2 : d ∣ a) (h3 : d ∣ b) : d ≤ gcd a b := sorry

7. lemma Lemma_7_1_10a {a b : Nat}
(n : Nat) (h : a ∣ b) : (n * a) ∣ (n * b) := sorry

lemma Lemma_7_1_10b {a b n : Nat}
(h1 : n ≠ 0) (h2 : (n * a) ∣ (n * b)) : a ∣ b := sorry

lemma Lemma_7_1_10c {a b : Nat}
(h1 : a ∣ b) (h2 : b ∣ a) : a = b := sorry

theorem Exercise_7_1_10 (a b n : Nat) :
gcd (n * a) (n * b) = n * gcd a b := sorry

7.2. Prime Factorization

A natural number 𝑛 is said to be prime if it is at least 2 and it cannot be written as a product
of two smaller natural numbers. Of course, we can write this definition in Lean.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

214

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

def prime (n : Nat) : Prop :=
2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n

The main goal of Section 7.2 of HTPI is to prove that every positive integer has a unique prime
factorization; that is, it can be written in a unique way as the product of a nondecreasing list
of prime numbers. To get started on this goal, we first prove that every number greater than or
equal to 2 has a prime factor. We leave one lemma as an exercise for you (it is a natural-number
version of Theorem_3_3_7).

def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n

lemma dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := sorry

lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n →
∃ (p : Nat), prime_factor p n := by

by_strong_induc
fix n : Nat
assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1
assume h1 : 2 ≤ n
by_cases h2 : prime n
· -- Case 1. h2 : prime n

apply Exists.intro n
define --Goal : prime n ∧ n ∣ n
show prime n ∧ n ∣ n from And.intro h2 (dvd_self n)
done

· -- Case 2. h2 : ¬prime n
define at h2

--h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n)
demorgan at h2
disj_syll h2 h1
obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2
obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3
have h5 : 2 ≤ a := by

by_contra h6
have h7 : a ≤ 1 := by linarith
have h8 : n ≤ b :=

calc n
_ = a * b := h4.left.symm
_ ≤ 1 * b := by rel [h7]
_ = b := by ring

linarith --n ≤ b contradicts b < n
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

215

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5
obtain (p : Nat) (h7 : prime_factor p a) from h6
apply Exists.intro p
define --Goal : prime p ∧ p ∣ n
define at h7 --h7 : prime p ∧ p ∣ a
apply And.intro h7.left
have h8 : a ∣ n := by

apply Exists.intro b
show n = a * b from (h4.left).symm
done

show p ∣ n from dvd_trans h7.right h8
done

done

Of course, by the well-ordering principle, an immediate consequence of this lemma is that
every number greater than or equal to 2 has a smallest prime factor.

lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) :
∃ (p : Nat), prime_factor p n ∧
∀ (q : Nat), prime_factor q n → p ≤ q := by

set S : Set Nat := {p : Nat | prime_factor p n}
have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h
show ∃ (p : Nat), prime_factor p n ∧

∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2
done

To talk about prime factorizations of positive integers, we’ll need to introduce a new type. If
U is any type, then List U is the type of lists of objects of type U. Such a list is written in
square brackets, with the entries separated by commas. For example, [3, 7, 1] has type List
Nat. The notation [] denotes the empty list, and if a has type U and l has type List U, then a
:: l denotes the list consisting of a followed by the entries of l. The empty list is sometimes
called the nil list, and the operation of constructing a list a :: l from a and l is called cons
(short for construct). Every list can be constructed by applying the cons operation repeatedly,
starting with the nil list. For example,

[3, 7, 1] = 3 :: [7, 1] = 3 :: (7 :: [1]) = 3 :: (7 :: (1 :: [])).

If l has type List U and a has type U, then a ∈ l means that a is one of the entries in the list
l. For example, 7 ∈ [3, 7, 1]. Lean knows several theorems about this notation:

@List.not_mem_nil : ∀ {α : Type u_1} (a : α),
a ∉ []

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

216

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

@List.mem_cons : ∀ {α : Type u_1} {a b : α} {l : List α},
a ∈ b :: l ↔ a = b ∨ a ∈ l

@List.mem_cons_self : ∀ {α : Type u_1} (a : α) (l : List α),
a ∈ a :: l

@List.mem_cons_of_mem : ∀ {α : Type u_1} (y : α) {a : α} {l : List α},
a ∈ l → a ∈ y :: l

The first two theorems give the conditions under which something is a member of the nil list
or a list constructed by cons, and the last two are easy consequences of the second.

To define prime factorizations, we must define several concepts first. Some of these concepts
are most easily defined recursively.

def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p

def nondec (l : List Nat) : Prop :=
match l with

| [] => True --Of course, True is a proposition that is always true
| n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L

def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l

def prod (l : List Nat) : Nat :=
match l with

| [] => 1
| n :: L => n * (prod L)

def prime_factorization (n : Nat) (l : List Nat) : Prop :=
nondec_prime_list l ∧ prod l = n

According to these definitions, all_prime l means that every member of the list l is prime,
nondec l means that every member of l is less than or equal to all later members, prod l is
the product of all members of l, and prime_factorization n l means that l is a nondecreasing
list of prime numbers whose product is n. It will be convenient to spell out some consequences
of these definitions in several lemmas:

lemma all_prime_nil : all_prime [] := by
define --Goal : ∀ p ∈ [], prime p
fix p : Nat
contrapos --Goal : ¬prime p → p ∉ []
assume h1 : ¬prime p

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

217

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

show p ∉ [] from List.not_mem_nil p
done

lemma all_prime_cons (n : Nat) (L : List Nat) :
all_prime (n :: L) ↔ prime n ∧ all_prime L := by

apply Iff.intro
· -- (→)

assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L
define at h1 --h1 : ∀ p ∈ n :: L, prime p
apply And.intro (h1 n (List.mem_cons_self n L))
define --Goal : ∀ p ∈ L, prime p
fix p : Nat
assume h2 : p ∈ L
show prime p from h1 p (List.mem_cons_of_mem n h2)
done

· -- (←)
assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l)
define : all_prime L at h1
define
fix p : Nat
assume h2 : p ∈ n :: L
rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L
by_cases on h2
· -- Case 1. h2 : p = n

rewrite [h2]
show prime n from h1.left
done

· -- Case 2. h2 : p ∈ L
show prime p from h1.right p h2
done

done
done

lemma nondec_nil : nondec [] := by
define --Goal : True
trivial --trivial proves some obviously true statements, such as True
done

lemma nondec_cons (n : Nat) (L : List Nat) :
nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

218

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

lemma prod_nil : prod [] = 1 := by rfl

lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl

Before we can prove the existence of prime factorizations, we will need one more fact: every
member of a list of natural numbers divides the product of the list. The proof will be by
induction on the length of the list, so we will need to know how to work with lengths of lists
in Lean. If l is a list, then the length of l is List.length l, which can also be written more
briefly as l.length. We’ll need a few more theorems about lists:

@List.length_eq_zero : ∀ {α : Type u_1} {l : List α},
l.length = 0 ↔ l = []

@List.length_cons : ∀ {α : Type u_1} (a : α) (as : List α),
(a :: as).length = as.length + 1

@List.exists_cons_of_ne_nil : ∀ {α : Type u_1} {l : List α},
l ≠ [] → ∃ (b : α) (L : List α), l = b :: L

And we’ll need one more lemma, which follows from the three theorems above; we leave the
proof as an exercise for you:

lemma exists_cons_of_length_eq_succ {A : Type}
{l : List A} {n : Nat} (h : l.length = n + 1) :
∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := sorry

We can now prove that every member of a list of natural numbers divides the product of the
list. After proving it by induction on the length of the list, we restate the lemma in a more
convenient form.

lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat),
∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by

by_induc
· --Base Case

fix l : List Nat
assume h1 : l.length = 0
rewrite [List.length_eq_zero] at h1 --h1 : l = []
rewrite [h1] --Goal : a ∈ [] → a ∣ prod []
contrapos
assume h2 : ¬a ∣ prod []
show a ∉ [] from List.not_mem_nil a
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

219

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

· -- Induction Step
fix n : Nat
assume ih : ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l
fix l : List Nat
assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l
obtain (b : Nat) (h2 : ∃ (L : List Nat),

l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1
obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2
have h4 : a ∈ L → a ∣ prod L := ih L h3.right
assume h5 : a ∈ l
rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L
rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L
by_cases on h5
· -- Case 1. h5 : a = b

apply Exists.intro (prod L)
rewrite [h5]
rfl
done

· -- Case 2. h5 : a ∈ L
have h6 : a ∣ prod L := h4 h5
have h7 : prod L ∣ b * prod L := by

apply Exists.intro b
ring
done

show a ∣ b * prod L from dvd_trans h6 h7
done

done
done

lemma list_elt_dvd_prod {a : Nat} {l : List Nat}
(h : a ∈ l) : a ∣ prod l := by

set n : Nat := l.length
have h1 : l.length = n := by rfl
show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h
done

The proof that every positive integer has a prime factorization is now long but straightfor-
ward.

lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 →
∃ (l : List Nat), prime_factorization n l := by

by_strong_induc

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

220

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

fix n : Nat
assume ih : ∀ n_1 < n, n_1 ≥ 1 →

∃ (l : List Nat), prime_factorization n_1 l
assume h1 : n ≥ 1
by_cases h2 : n = 1
· -- Case 1. h2 : n = 1

apply Exists.intro []
define
apply And.intro
· -- Proof of nondec_prime_list []

define
show all_prime [] ∧ nondec [] from

And.intro all_prime_nil nondec_nil
done

· -- Proof of prod [] = n
rewrite [prod_nil, h2]
rfl
done

done
· -- Case 2. h2 : n ≠ 1

have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2
obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat),

prime_factor q n → p ≤ q) from exists_least_prime_factor h3
have p_prime_factor : prime_factor p n := h4.left
define at p_prime_factor
have p_prime : prime p := p_prime_factor.left
have p_dvd_n : p ∣ n := p_prime_factor.right
have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right
obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n
have h5 : m ≠ 0 := by

contradict h1 with h6
have h7 : n = 0 :=

calc n
_ = p * m := n_eq_pm
_ = p * 0 := by rw [h6]
_ = 0 := by ring

rewrite [h7]
decide
done

have m_pos : 0 < m := Nat.pos_of_ne_zero h5
have m_lt_n : m < n := by

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

221

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

define at p_prime
show m < n from

calc m
_ < m + m := by linarith
_ = 2 * m := by ring
_ ≤ p * m := by rel [p_prime.left]
_ = n := n_eq_pm.symm

done
obtain (L : List Nat) (h6 : prime_factorization m L)

from ih m m_lt_n m_pos
define at h6
have ndpl_L : nondec_prime_list L := h6.left
define at ndpl_L
apply Exists.intro (p :: L)
define
apply And.intro
· -- Proof of nondec_prime_list (p :: L)

define
apply And.intro
· -- Proof of all_prime (p :: L)

rewrite [all_prime_cons]
show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left
done

· -- Proof of nondec (p :: L)
rewrite [nondec_cons]
apply And.intro _ ndpl_L.right
fix q : Nat
assume q_in_L : q ∈ L
have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L
rewrite [h6.right] at h7 --h7 : q ∣ m
have h8 : m ∣ n := by

apply Exists.intro p
rewrite [n_eq_pm]
ring
done

have q_dvd_n : q ∣ n := dvd_trans h7 h8
have ap_L : all_prime L := ndpl_L.left
define at ap_L
have q_prime_factor : prime_factor q n :=

And.intro (ap_L q q_in_L) q_dvd_n
show p ≤ q from p_least q q_prime_factor
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

222

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

done
· -- Proof of prod (p :: L) = n

rewrite [prod_cons, h6.right, n_eq_pm]
rfl
done

done
done

We now turn to the proof that the prime factorization of a positive integer is unique. In
preparation for that proof, HTPI defines two numbers to be relatively prime if their greatest
common divisor is 1, and then it uses that concept to prove two theorems, 7.2.2 and 7.2.3.
Here are similar proofs of those theorems in Lean, with the proof of one lemma left as an
exercise. In the proof of Theorem 7.2.2, we begin, as we did in the proof of Theorem 7.1.6, by
converting the goal from natural numbers to integers so that we can use integer algebra.

def rel_prime (a b : Nat) : Prop := gcd a b = 1

theorem Theorem_7_2_2 {a b c : Nat}
(h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by

rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b
define at h1; define at h2; define
obtain (j : Nat) (h3 : a * b = c * j) from h1
set s : Int := gcd_c1 a c
set t : Int := gcd_c2 a c
have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a
rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int)
apply Exists.intro (s * ↑j + t * ↑b)
show ↑b = ↑c * (s * ↑j + t * ↑b) from

calc ↑b
_ = (1 : Int) * ↑b := (one_mul _).symm
_ = (s * ↑a + t * ↑c) * ↑b := by rw [h4]
_ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring
_ = s * (↑c * ↑j) + t * ↑c * ↑b := by

rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j]
_ = ↑c * (s * ↑j + t * ↑b) := by ring

done

lemma dvd_prime {a p : Nat}
(h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry

lemma rel_prime_of_prime_not_dvd {a p : Nat}
(h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

223

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

have h3 : gcd a p ∣ a := gcd_dvd_left a p
have h4 : gcd a p ∣ p := gcd_dvd_right a p
have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4
have h6 : gcd a p ≠ p := by

contradict h2 with h6
rewrite [h6] at h3
show p ∣ a from h3
done

disj_syll h5 h6
show rel_prime a p from h5
done

theorem Theorem_7_2_3 {a b p : Nat}
(h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by

or_right with h3
have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3
show p ∣ b from Theorem_7_2_2 h2 h4
done

Theorem 7.2.4 in HTPI extends Theorem 7.2.3 to show that if a prime number divides the
product of a list of natural numbers, then it divides one of the numbers in the list. (Theorem
7.2.3 is the case of a list of length two.) The proof in HTPI is by induction on the length of
the list, and we could use that method to prove the theorem in Lean. But look back at our
proof of the lemma list_elt_dvd_prod_by_length, which also used induction on the length of
a list. In the base case, we ended up proving that the nil list has the property stated in the
lemma, and in the induction step we proved that if a list L has the property, then so does
any list of the form b :: L. We could think of this as a kind of “induction on lists.” As we
observed earlier, every list can be constructed by starting with the nil list and applying cons
finitely many times. It follows that if the nil list has some property, and applying the cons
operation to a list with the property produces another list with the property, then all lists have
the property. (In fact, a similar principle was at work in our recursive definitions of nondec l
and prod l.)

Lean has a theorem called List.rec that can be used to justify induction on lists. This is a
little more convenient than induction on the length of a list, so we’ll use it to prove Theorem
7.2.4. The proof uses two lemmas, whose proofs we leave as exercises for you.

lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := sorry

lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := sorry

theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) :

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

224

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by
apply List.rec
· -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a

rewrite [prod_nil]
assume h2 : p ∣ 1
show ∃ a ∈ [], p ∣ a from

absurd (eq_one_of_dvd_one h2) (prime_not_one h1)
done

· -- Induction Step
fix b : Nat
fix L : List Nat
assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a

--Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a
assume h2 : p ∣ prod (b :: L)
rewrite [prod_cons] at h2
have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2
by_cases on h3
· -- Case 1. h3 : p ∣ b

apply Exists.intro b
show b ∈ b :: L ∧ p ∣ b from

And.intro (List.mem_cons_self b L) h3
done

· -- Case 2. h3 : p ∣ prod L
obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3
apply Exists.intro a
show a ∈ b :: L ∧ p ∣ a from

And.intro (List.mem_cons_of_mem b h4.left) h4.right
done

done
done

In Theorem 7.2.4, if all members of the list l are prime, then we can conclude not merely that
p divides some member of l, but that p is one of the members.

lemma prime_in_list {p : Nat} {l : List Nat}
(h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by

obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3
define at h2
have h5 : prime a := h2 a h4.left
have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right
disj_syll h6 (prime_not_one h1)
rewrite [h6]

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

225

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

show a ∈ l from h4.left
done

The uniqueness of prime factorizations follows from Theorem 7.2.5 of HTPI, which says that if
two nondecreasing lists of prime numbers have the same product, then the two lists must be the
same. In HTPI, a key step in the proof of Theorem 7.2.5 is to show that if two nondecreasing
lists of prime numbers have the same product, then the last entry of one list is less than or
equal to the last entry of the other. In Lean, because of the way the cons operation works, it
is easier to work with the first entries of the lists.

lemma first_le_first {p q : Nat} {l m : List Nat}
(h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m))
(h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by

define at h1; define at h2
have h4 : q ∣ prod (p :: l) := by

define
apply Exists.intro (prod m)
rewrite [←prod_cons]
show prod (p :: l) = prod (q :: m) from h3
done

have h5 : all_prime (q :: m) := h2.left
rewrite [all_prime_cons] at h5
have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4
have h7 : nondec (p :: l) := h1.right
rewrite [nondec_cons] at h7
rewrite [List.mem_cons] at h6
by_cases on h6
· -- Case 1. h6 : q = p

linarith
done

· -- Case 2. h6 : q ∈ l
have h8 : ∀ m ∈ l, p ≤ m := h7.left
show p ≤ q from h8 q h6
done

done

The proof of Theorem 7.2.5 is another proof by induction on lists. It uses a few more lemmas
whose proofs we leave as exercises.

lemma nondec_prime_list_tail {p : Nat} {l : List Nat}
(h : nondec_prime_list (p :: l)) : nondec_prime_list l := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

226

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

lemma cons_prod_not_one {p : Nat} {l : List Nat}
(h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := sorry

lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) :
l = [] ↔ prod l = 1 := sorry

lemma prime_pos {p : Nat} (h : prime p) : p > 0 := sorry

theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat),
nondec_prime_list l1 → nondec_prime_list l2 →
prod l1 = prod l2 → l1 = l2 := by

apply List.rec
· -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] →

-- nondec_prime_list l2 → prod [] = prod l2 → [] = l2
fix l2 : List Nat
assume h1 : nondec_prime_list []
assume h2 : nondec_prime_list l2
assume h3 : prod [] = prod l2
rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3
show [] = l2 from h3.symm
done

· -- Induction Step
fix p : Nat
fix L1 : List Nat
assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 →

nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2
-- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) →
-- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2
fix l2 : List Nat
assume h1 : nondec_prime_list (p :: L1)
assume h2 : nondec_prime_list l2
assume h3 : prod (p :: L1) = prod l2
have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1
rewrite [h3, ←list_nil_iff_prod_one h2] at h4
obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from

List.exists_cons_of_ne_nil h4
obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5
rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2)
rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2)
have h7 : p ≤ q := first_le_first h1 h2 h3
have h8 : q ≤ p := first_le_first h2 h1 h3.symm

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

227

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

have h9 : p = q := by linarith
rewrite [h9, prod_cons, prod_cons] at h3

--h3 : q * prod L1 = q * prod L2
have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1
have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2
define at h2
have h12 : all_prime (q :: L2) := h2.left
rewrite [all_prime_cons] at h12
have h13 : q > 0 := prime_pos h12.left
have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3
have h15 : L1 = L2 := ih L2 h10 h11 h14
rewrite [h6, h9, h15]
rfl
done

done

Putting it all together, we can finally prove the fundamental theorem of arithmetic, which is
stated as Theorem 7.2.6 in HTPI :

theorem fund_thm_arith (n : Nat) (h : n ≥ 1) :
∃! (l : List Nat), prime_factorization n l := by

exists_unique
· -- Existence

show ∃ (l : List Nat), prime_factorization n l from
exists_prime_factorization n h

done
· -- Uniqueness

fix l1 : List Nat; fix l2 : List Nat
assume h1 : prime_factorization n l1
assume h2 : prime_factorization n l2
define at h1; define at h2
have h3 : prod l1 = n := h1.right
rewrite [←h2.right] at h3
show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3
done

done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

228

https://doi.org/10.1017/9781108539890

7.2. Prime Factorization

Exercises

1. lemma dvd_prime {a p : Nat}
(h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry

2. --Hints: Start with apply List.rec.
--You may find the theorem mul_ne_zero useful.
theorem prod_nonzero_nonzero : ∀ (l : List Nat),

(∀ a ∈ l, a ≠ 0) → prod l ≠ 0 := sorry

3. theorem rel_prime_iff_no_common_factor (a b : Nat) :
rel_prime a b ↔ ¬∃ (p : Nat), prime p ∧ p ∣ a ∧ p ∣ b := sorry

4. theorem rel_prime_symm {a b : Nat} (h : rel_prime a b) :
rel_prime b a := sorry

5. lemma in_prime_factorization_iff_prime_factor {a : Nat} {l : List Nat}
(h1 : prime_factorization a l) (p : Nat) :
p ∈ l ↔ prime_factor p a := sorry

6. theorem Exercise_7_2_5 {a b : Nat} {l m : List Nat}
(h1 : prime_factorization a l) (h2 : prime_factorization b m) :
rel_prime a b ↔ (¬∃ (p : Nat), p ∈ l ∧ p ∈ m) := sorry

7. theorem Exercise_7_2_6 (a b : Nat) :
rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry

8. theorem Exercise_7_2_7 {a b a' b' : Nat}
(h1 : rel_prime a b) (h2 : a' ∣ a) (h3 : b' ∣ b) :
rel_prime a' b' := sorry

9. theorem Exercise_7_2_9 {a b j k : Nat}
(h1 : gcd a b ≠ 0) (h2 : a = j * gcd a b) (h3 : b = k * gcd a b) :
rel_prime j k := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

229

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

10. theorem Exercise_7_2_17a (a b c : Nat) :
gcd a (b * c) ∣ gcd a b * gcd a c := sorry

7.3. Modular Arithmetic

If 𝑚 is a positive integer and 𝑎 and 𝑏 are integers, then HTPI uses the notation 𝑎 ≡ 𝑏 (mod 𝑚),
or sometimes 𝑎 ≡𝑚 𝑏, to indicate that 𝑎 is congruent to 𝑏 modulo 𝑚, which is defined to mean
𝑚 ∣ (𝑎 − 𝑏). Congruence modulo 𝑚 is an equivalence relation on the integers, and therefore it
induces a partition ℤ/≡𝑚 of the integers, as shown in Section 4.5 of HTPI. The elements of
this partition are the equivalence classes [𝑎]𝑚 for 𝑎 ∈ ℤ; we will call these congruence classes
modulo 𝑚. Section 7.3 of HTPI defines operations of addition and multiplication of congruence
classes and proves algebraic properties of those operations.

For the purpose of working out the rules of modular arithmetic, the only important properties
of congruence classes are the following:

1. For every integer 𝑎, there is a corresponding congruence class [𝑎]𝑚 ∈ ℤ/≡𝑚.
2. For every congruence class 𝑋 ∈ ℤ/≡𝑚, there is some integer 𝑎 such that 𝑋 = [𝑎]𝑚.
3. For all integers 𝑎 and 𝑏, [𝑎]𝑚 = [𝑏]𝑚 if and only if 𝑎 ≡𝑚 𝑏.
4. For all integers 𝑎 and 𝑏, [𝑎]𝑚 + [𝑏]𝑚 = [𝑎 + 𝑏]𝑚.
5. For all integers 𝑎 and 𝑏, [𝑎]𝑚 ⋅ [𝑏]𝑚 = [𝑎𝑏]𝑚.

To study congruence modulo m in Lean, we will declare m to have type Nat, which allows for
the possibility that m = 0, but we will mostly focus on the case m ≠ 0. For a and b of type Int,
we define congr_mod m a b to mean that a is congruent to b modulo m. Notice that to define
this relation in Lean, we must coerce m to be an integer so that we can use it in the divisibility
relation on the integers.

def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b)

We can teach Lean to use more familiar notation for congruence modulo m by giving the
following command:

notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b

This tells Lean that if we type a ≡ b (MOD m), then Lean should interpret it as congr_mod m
a b. (To enter the symbol ≡, type \==. Don’t worry about the :50 in the notation command
above. It is there to help Lean parse this new notation when it occurs together with other
notation.)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

230

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

We can now prove that congruence modulo m is reflexive, symmetric, and transitive. In these
proofs, we leave it to Lean to fill in coercions when they are necessary, and as usual, we leave
some details as exercises.

theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := sorry

theorem congr_symm {m : Nat} : ∀ {a b : Int},
a ≡ b (MOD m) → b ≡ a (MOD m) := by

fix a : Int; fix b : Int
assume h1 : a ≡ b (MOD m)
define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c
define --Goal : ∃ (c : Int), b - a = ↑m * c
obtain (c : Int) (h2 : a - b = m * c) from h1
apply Exists.intro (-c)
show b - a = m * (-c) from

calc b - a
_ = -(a - b) := by ring
_ = -(m * c) := by rw [h2]
_ = m * (-c) := by ring

done

theorem congr_trans {m : Nat} : ∀ {a b c : Int},
a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry

We could now repeat the entire development of ℤ/≡𝑚 in Lean, but there is no need to do so;
such a development is already included in Lean’s library of definitions and theorems. For each
natural number m, Lean has a type ZMod m, and the objects of that type are Lean’s version
of the congruence classes modulo m. We should warn you that Lean’s way of defining ZMod m
differs in some ways from HTPI ’s definition of ℤ/≡𝑚. In particular, objects of type ZMod m
are not sets of integers. Thus, if X has type ZMod m and a has type Int, then Lean will not
understand what you mean if you write a ∈ X. However, Lean’s congruence classes have the
properties 1–5 listed above, and that’s all that will matter to us.

Property 1 says that if a has type Int, then there should be a corresponding congruence class
in ZMod m. In fact, you can find the corresponding congruence class by simply coercing a to
have type ZMod m. But for the sake of clarity, we will introduce a function for computing the
congruence class modulo m of a:

def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m)

Thus, cc m a is the congruence class modulo m of a. Once again, it will be convenient to teach
Lean to use more familiar notation for congruence classes, so we give the command:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

231

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

notation:max "["a"]_"m:max => cc m a

Now if we type [a]_m, then Lean will interpret it as cc m a. Thus, from now on, [a]_m
will be our notation in Lean for the congruence class modulo m of a; it corresponds to the
HTPI notation [𝑎]𝑚. (Once again, you can ignore the two occurrences of :max in the notation
command above.)

Properties 2–5 of congruence classes are established by the following theorems:

theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m

theorem cc_eq_iff_congr (m : Nat) (a b : Int) :
[a]_m = [b]_m ↔ a ≡ b (MOD m)

theorem add_class (m : Nat) (a b : Int) :
[a]_m + [b]_m = [a + b]_m

theorem mul_class (m : Nat) (a b : Int) :
[a]_m * [b]_m = [a * b]_m

We won’t discuss the proofs of these theorems, since they depend on details of Lean’s repre-
sentation of objects of type ZMod m that are beyond the scope of this book. But these theorems
are all we will need to use to develop the theory of modular arithmetic.

In many of our theorems about ZMod m, we will need to include a hypothesis that m ≠ 0. We
will usually state this hypothesis in the form NeZero m, which is a proposition that is equivalent
to m ≠ 0. Indeed, there is a theorem in Lean’s library that asserts this equivalence:

@neZero_iff : ∀ {R : Type u_1} [inst : Zero R] {n : R},
NeZero n ↔ n ≠ 0

What distinguishes NeZero m from m ≠ 0 is that NeZero m is what is called a type class. What this
means is that, once Lean has a proof of NeZero m for some natural number m, it will remember
that proof and be able to recall it when necessary. As a result, NeZero m can be used as a new
kind of implicit argument in the statement of a theorem. To make it an implicit argument, we
write it in square brackets, like this: [NeZero m]. When applying a theorem that includes this
hypothesis, there is no need to supply a proof that m ≠ 0; as long as Lean knows about such a
proof, it will recall that proof on its own. When you are proving a theorem that includes the
hypothesis [NeZero m], Lean will recognize NeZero.ne m as a proof that m ≠ 0.

The first theorem in Section 7.3 of HTPI, Theorem 7.3.1, says that if m ≠ 0, then every integer
a is congruent modulo m to exactly one integer r satisfying 0 ≤ r < m. As explained in HTPI,
we say that {0, 1, ..., m - 1} is a complete residue system modulo m. This implies that the
objects of type ZMod m are precisely the congruence classes [0]_m, [1]_m, …, [m - 1]_m.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

232

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

The proof of Theorem 7.3.1 makes use of the quotient and remainder when a is divided by m. In
Section 6.4, we learned about the Lean theorems Nat.div_add_mod and Nat.mod_lt, but those
theorems concerned quotients and remainders when dividing natural numbers. Fortunately,
Lean has similar theorems for dealing with division of integers:

Int.ediv_add_emod : ∀ (a b : ℤ), b * (a / b) + a % b = a

Int.emod_lt_of_pos : ∀ (a : ℤ) {b : ℤ}, 0 < b → a % b < b

Int.emod_nonneg : ∀ (a : ℤ) {b : ℤ}, b ≠ 0 → 0 ≤ a % b

We now have all the background we need to prove Theorem 7.3.1 in Lean. We begin with
a few lemmas, some of which require the hypothesis [NeZero m]. The proof of the theorem
closely follows the proof in HTPI. Note that all of the proofs below involve the expression a
% m. Since a is an integer, the operator % in this expression must be the integer version of the
mod operator, and therefore m must be coerced to be an integer. Thus, Lean interprets a % m
as a % ↑m

lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by
have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m)
show 0 ≤ a % m from Int.emod_nonneg a h1
done

lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := sorry

lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by
define
have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m
apply Exists.intro (a / m)
show a - a % m = m * (a / m) from

calc a - (a % m)
_ = m * (a / m) + a % m - a % m := by rw [h1]
_ = m * (a / m) := by ring

done

lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) :
0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) :=

And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a))

theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) :
∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by

exists_unique
· -- Existence

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

233

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

apply Exists.intro (a % m)
show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m)

from mod_cmpl_res m a
done

· -- Uniqueness
fix r1 : Int; fix r2 : Int
assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m)
assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m)
have h3 : r1 ≡ r2 (MOD m) :=

congr_trans (congr_symm h1.right.right) h2.right.right
obtain (d : Int) (h4 : r1 - r2 = m * d) from h3
have h5 : r1 - r2 < m * 1 := by linarith
have h6 : m * (-1) < r1 - r2 := by linarith
rewrite [h4] at h5 --h5 : m * d < m * 1
rewrite [h4] at h6 --h6 : m * -1 < m * d
have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m
have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7
have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7
have h10 : d = 0 := by linarith
show r1 = r2 from

calc r1
_ = r1 - r2 + r2 := by ring
_ = m * 0 + r2 := by rw [h4, h10]
_ = r2 := by ring

done
done

The lemma mod_cmpl_res above says that a % m is an element of the complete residue system
{0, 1, ..., m - 1} that is congruent to a modulo m. The lemma requires the hypothesis
[NeZero m], because its proof appeals to two previous lemmas, mod_nonneg and mod_lt, that
require that hypothesis. But when the proof invokes those previous lemmas, this hypothesis
is not mentioned, because it is an implicit argument.

An immediate consequence of the lemma congr_mod_mod is the following lemma, which will be
useful to us later.

lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m :=
(cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a)

Theorem 7.3.6 in HTPI states a number of algebraic properties of modular arithmetic. These
properties all follow easily from the theorems we have already stated. To illustrate this, we
prove two parts of the theorem.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

234

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by
obtain (a : Int) (h1 : X = [a]_m) from cc_rep X
obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y
rewrite [h1, h2]
have h3 : a + b = b + a := by ring
show [a]_m + [b]_m = [b]_m + [a]_m from

calc [a]_m + [b]_m
_ = [a + b]_m := add_class m a b
_ = [b + a]_m := by rw [h3]
_ = [b]_m + [a]_m := (add_class m b a).symm

done

theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by
obtain (a : Int) (h1 : X = [a]_m) from cc_rep X
rewrite [h1]
have h2 : a * 1 = a := by ring
show [a]_m * [1]_m = [a]_m from

calc [a]_m * [1]_m
_ = [a * 1]_m := mul_class m a 1
_ = [a]_m := by rw [h2]

done

Theorem_7_3_6_7 shows that [1]_m is the multiplicative identity element for ZMod m. We say
that a congruence class Y is a multiplicative inverse of another class X if X * Y = [1]_m, and a
congruence class is invertible if it has a multiplicative inverse:

def invertible {m : Nat} (X : ZMod m) : Prop :=
∃ (Y : ZMod m), X * Y = [1]_m

Which congruence classes are invertible? The answer is given by Theorem 7.3.7 in HTPI,
which says that if 𝑎 is a positive integer, then [𝑎]𝑚 is invertible if and only if 𝑚 and 𝑎 are
relatively prime. The proof uses an exercise from the last section. Here is the Lean version of
the proof.

theorem Exercise_7_2_6 (a b : Nat) :
rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry

lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) :
[a]_m * [gcd_c2 m a]_m = [1]_m := by

set s : Int := gcd_c1 m a
have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m
define at h1

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

235

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1
rewrite [mul_class, cc_eq_iff_congr]
define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c
apply Exists.intro (-s)
show a * (gcd_c2 m a) - 1 = m * (-s) from

calc a * (gcd_c2 m a) - 1
_ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring
_ = 1 + m * (-s) - 1 := by rw [h2]
_ = m * (-s) := by ring

done

theorem Theorem_7_3_7 (m a : Nat) :
invertible [a]_m ↔ rel_prime m a := by

apply Iff.intro
· -- (→)

assume h1 : invertible [a]_m
define at h1
obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1
obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y
rewrite [h3, mul_class, cc_eq_iff_congr] at h2
define at h2
obtain (c : Int) (h4 : a * b - 1 = m * c) from h2
rewrite [Exercise_7_2_6]

--Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1
apply Exists.intro (-c)
apply Exists.intro b
show (-c) * m + b * a = 1 from

calc (-c) * m + b * a
_ = (-c) * m + (a * b - 1) + 1 := by ring
_ = (-c) * m + m * c + 1 := by rw [h4]
_ = 1 := by ring

done
· -- (←)

assume h1 : rel_prime m a
define
show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from

Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1)
done

done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

236

https://doi.org/10.1017/9781108539890

7.3. Modular Arithmetic

Exercises

1. theorem congr_trans {m : Nat} : ∀ {a b c : Int},
a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry

2. theorem Theorem_7_3_6_3 {m : Nat} (X : ZMod m) : X + [0]_m = X := sorry

3. theorem Theorem_7_3_6_4 {m : Nat} (X : ZMod m) :
∃ (Y : ZMod m), X + Y = [0]_m := sorry

4. theorem Exercise_7_3_4a {m : Nat} (Z1 Z2 : ZMod m)
(h1 : ∀ (X : ZMod m), X + Z1 = X)
(h2 : ∀ (X : ZMod m), X + Z2 = X) : Z1 = Z2 := sorry

5. theorem Exercise_7_3_4b {m : Nat} (X Y1 Y2 : ZMod m)
(h1 : X + Y1 = [0]_m) (h2 : X + Y2 = [0]_m) : Y1 = Y2 := sorry

6. theorem Theorem_7_3_10 (m a : Nat) (b : Int) :
¬(↑(gcd m a) : Int) ∣ b → ¬∃ (x : Int), a * x ≡ b (MOD m) := sorry

7. theorem Theorem_7_3_11 (m n : Nat) (a b : Int) (h1 : n ≠ 0) :
n * a ≡ n * b (MOD n * m) ↔ a ≡ b (MOD m) := sorry

8. theorem Exercise_7_3_16 {m : Nat} {a b : Int} (h : a ≡ b (MOD m)) :
∀ (n : Nat), a ^ n ≡ b ^ n (MOD m) := sorry

9. example {m : Nat} [NeZero m] (X : ZMod m) :
∃! (a : Int), 0 ≤ a ∧ a < m ∧ X = [a]_m := sorry

10. theorem congr_rel_prime {m a b : Nat} (h1 : a ≡ b (MOD m)) :
rel_prime m a ↔ rel_prime m b := sorry

11. --Hint: You may find the theorem Int.ofNat_mod_ofNat useful.
theorem rel_prime_mod (m a : Nat) :

rel_prime m (a % m) ↔ rel_prime m a := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

237

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

12. lemma congr_iff_mod_eq_Int (m : Nat) (a b : Int) [NeZero m] :
a ≡ b (MOD m) ↔ a % ↑m = b % ↑m := sorry

--Hint for next theorem: Use the lemma above,
--together with the theorems Int.ofNat_mod_ofNat and Nat.cast_inj.
theorem congr_iff_mod_eq_Nat (m a b : Nat) [NeZero m] :

↑a ≡ ↑b (MOD m) ↔ a % m = b % m := sorry

7.4. Euler’s Theorem

The main result of Section 7.4 of HTPI is Euler’s theorem. The statement of the theorem
involves Euler’s totient function 𝜑. For any positive integer 𝑚, HTPI defines 𝜑(𝑚) to be the
number of elements of ℤ/≡𝑚 that have multiplicative inverses. In order to state and prove
Euler’s theorem in Lean, our first task is to define a Lean function phi : Nat → Nat that
computes the totient function.

Since {0, 1, ..., m - 1} is a complete residue system modulo m, phi m can be described as the
number of natural numbers a < m such that [a]_m is invertible. According to Theorem_7_3_7,
[a]_m is invertible if and only if m and a are relatively prime, so phi m is also equal to the
number of natural numbers a < m that are relatively prime to m. We begin by defining a
function num_rp_below m k that counts the number of natural numbers less than k that are
relatively prime to m.

def num_rp_below (m k : Nat) : Nat :=
match k with

| 0 => 0
| j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1

else num_rp_below m j

This is the first time we have used an if ... then ... else expression in a Lean definition. To
prove theorems about such expressions, we will need two theorems from Lean’s library, if_pos
and if_neg. The #check command tells us what they say:

@if_pos : ∀ {c : Prop} {h : Decidable c},
c → ∀ {α : Sort u_1} {t e : α}, (if c then t else e) = t

@if_neg : ∀ {c : Prop} {h : Decidable c},
¬c → ∀ {α : Sort u_1} {t e : α}, (if c then t else e) = e

Ignoring the implicit arguments, this tells us that if h is a proof of a proposition c, then if_pos
h is a proof of (if c then t else e) = t, and if h is a proof of ¬c, then if_neg h is a proof

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

238

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

of (if c then t else e) = e. (Technically, the implicit arguments say that c must be a
“decidable” proposition, but we won’t worry about that detail.) We often use these theorems
with the rewrite tactic to rewrite an expression of the form if c then t else e as either t or
e, depending on whether c is true or false.

lemma num_rp_below_base {m : Nat} :
num_rp_below m 0 = 0 := by rfl

lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) :
num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by

have h1 : num_rp_below m (j + 1) =
if gcd m j = 1 then (num_rp_below m j) + 1
else num_rp_below m j := by rfl

define at h --h : gcd m j = 1
rewrite [if_pos h] at h1

--h1 : num_rp_below m (j + 1) = num_rp_below m j + 1
show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1
done

lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) :
num_rp_below m (j + 1) = num_rp_below m j := by

have h1 : num_rp_below m (j +1) =
if gcd m j = 1 then (num_rp_below m j) + 1
else num_rp_below m j := by rfl

define at h --h : ¬gcd m j = 1
rewrite [if_neg h] at h1

--h1 : num_rp_below m (j + 1) = num_rp_below m j
show num_rp_below m (j + 1) = num_rp_below m j from h1
done

We can now use num_rp_below to define the totient function.

def phi (m : Nat) : Nat := num_rp_below m m

lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl

#eval phi 10 --Answer: 4

With this preparation, we can now state the theorem we will prove:

theorem Theorem_7_4_2 {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
[a]_m ^ (phi m) = [1]_m

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

239

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

In preparation for proving this theorem, HTPI first shows that the set of invertible congruence
classes is closed under inverses and multiplication. For our purposes, we will find it useful to
prove a slightly different lemma. Note that Lean knows all of the basic algebraic laws of
addition and multiplication of congruence classes, and as a result the ring tactic can be used
to do algebraic reasoning in ZMod m, as illustrated in the proof below.

lemma prod_inv_iff_inv {m : Nat} {X : ZMod m}
(h1 : invertible X) (Y : ZMod m) :
invertible (X * Y) ↔ invertible Y := by

apply Iff.intro
· -- (→)

assume h2 : invertible (X * Y)
obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2
apply Exists.intro (X * Z)
rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z
ring --Note that ring can do algebra in ZMod m
done

· -- (←)
assume h2 : invertible Y
obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1
obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2
apply Exists.intro (Xi * Yi)
show (X * Y) * (Xi * Yi) = [1]_m from

calc X * Y * (Xi * Yi)
_ = (X * Xi) * (Y * Yi) := by ring
_ = [1]_m * [1]_m := by rw [h3, h4]
_ = [1]_m := Theorem_7_3_6_7 [1]_m

done
done

One of the key ideas in the proof of Theorem 7.4.2 in HTPI involves computing the product
of all invertible congruence classes. To compute this product in Lean, we begin by defining a
function F m : Nat → ZMod m as follows:

def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m

lemma F_rp_def {m i : Nat} (h : rel_prime m i) :
F m i = [i]_m := by

have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl
define at h --h : gcd m i = 1
rewrite [if_pos h] at h1
show F m i = [i]_m from h1

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

240

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

done

lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) :
F m i = [1]_m := sorry

Note that F is defined as a function of two natural numbers, m and i, but as we discussed in
Section 5.4, it follows that the partial application F m is a function from Nat to ZMod m.

Now consider the product (F m 0) * (F m 1) * ... * (F m (m - 1)); we will call this the
F-product. If m and i are not relatively prime, then F m i = [1]_m, and since [1]_m is the
multiplicative identity element of ZMod m, the factor F m i contributes nothing to the product.
Thus, the F-product is equal to the product of the factors F m i for which m and i are relatively
prime. But for those values of i, F m i = [i]_m, so the product is equal to the product of all
congruence classes [i]_m with m and i relatively prime. By Theorem_7_3_7, that is the product
of all invertible congruence classes.

To express the F-product in Lean, we imitate our approach to summations, as described in
Chapter 6. We begin by defining prod_seq j k f to be the product of a sequence of j consecutive
values of the function f, starting with f k:

def prod_seq {m : Nat}
(j k : Nat) (f : Nat → ZMod m) : ZMod m :=

match j with
| 0 => [1]_m
| n + 1 => prod_seq n k f * f (k + n)

lemma prod_seq_base {m : Nat}
(k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl

lemma prod_seq_step {m : Nat}
(n k : Nat) (f : Nat → ZMod m) :
prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl

lemma prod_seq_zero_step {m : Nat}
(n : Nat) (f : Nat → ZMod m) :
prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := sorry

Using this notation, the expression prod_seq m 0 (F m) denotes the F-product, which, as we
saw earlier, is equal to the product of the invertible congruence classes.

Now suppose a is a natural number that is relatively prime to m. The next step in the proof in
HTPI is to multiply each factor in the product of the invertible congruence classes by [a]_m.
To do this, we define a function G as follows:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

241

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

def G (m a i : Nat) : Nat := (a * i) % m

Consider the following product, which we will call the FG-product:

(F m (G m a 0)) * (F m (G m a 1)) * ... * (F m (G m a (m - 1))).

Using the partial application G m a, which is a function from Nat to Nat, we can express this in
Lean as prod_seq m 0 ((F m) ∘ (G m a)). To understand this product we will need two facts
about G.

lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m :=
calc [G m a i]_m

_ = [(a * i) % m]_m := by rfl
_ = [a * i]_m := (cc_eq_mod m (a * i)).symm
_ = [a]_m * [i]_m := (mul_class m a i).symm

lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) :
rel_prime m (G m a i) ↔ rel_prime m i := by

have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1
show rel_prime m (G m a i) ↔ rel_prime m i from

calc rel_prime m (G m a i)
_ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm
_ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G]
_ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m)
_ ↔ rel_prime m i := Theorem_7_3_7 m i

done

Now let’s analyze the FG-product. If i is not relatively prime to m, then by G_rp_iff, G m a i
is also not relatively prime to m, so F m (G m a i) = [1]_m. As before, this means that these
terms contribute nothing to the FG-product. If i is relatively prime to m, then so is G m a i,
and therefore, by cc_G,

F m (G m a i) = [G m a i]_m = [a]_m * [i]_m = [a]_m * (F m i).

This means that, in the FG-product, each factor contributed by a value of i that is relatively
prime to m is [a]_m times the corresponding factor in the F-product. Since the number of such
factors is phi m, it follows that the FG-product is [a]_m ^ (phi m) times the F-product.

Let’s see if we can prove this in Lean.

lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) :
F m (G m a i) = [a]_m * F m i := by

have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2
show F m (G m a i) = [a]_m * F m i from

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

242

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

calc F m (G m a i)
_ = [G m a i]_m := F_rp_def h3
_ = [a]_m * [i]_m := cc_G m a i
_ = [a]_m * F m i := by rw [F_rp_def h2]

done

lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) :
F m (G m a i) = [1]_m := sorry

lemma FG_prod {m a : Nat} (h1 : rel_prime m a) :
∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) =

[a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by
by_induc
· -- Base Case

show prod_seq 0 0 ((F m) ∘ (G m a)) =
[a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from

calc prod_seq 0 0 ((F m) ∘ (G m a))
_ = [1]_m := prod_seq_base _ _
_ = [a]_m ^ 0 * [1]_m := by ring
_ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by

rw [num_rp_below_base, prod_seq_base]
done

· -- Induction Step
fix k : Nat
assume ih : prod_seq k 0 ((F m) ∘ (G m a)) =

[a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m)
by_cases h2 : rel_prime m k
· -- Case 1. h2 : rel_prime m k

show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) =
[a]_m ^ (num_rp_below m (k + 1)) *
prod_seq (k + 1) 0 (F m) from

calc prod_seq (k + 1) 0 ((F m) ∘ (G m a))
_ = prod_seq k 0 ((F m) ∘ (G m a)) *

F m (G m a k) := prod_seq_zero_step _ _
_ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *

F m (G m a k) := by rw [ih]
_ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *

([a]_m * F m k) := by rw [FG_rp h1 h2]
_ = [a]_m ^ ((num_rp_below m k) + 1) *

((prod_seq k 0 (F m)) * F m k) := by ring
_ = [a]_m ^ (num_rp_below m (k + 1)) *

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

243

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

prod_seq (k + 1) 0 (F m) := by
rw [num_rp_below_step_rp h2, prod_seq_zero_step]

done
· -- Case 2. h2 : ¬rel_prime m k

show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) =
[a]_m ^ (num_rp_below m (k + 1)) *
prod_seq (k + 1) 0 (F m) from

calc prod_seq (k + 1) 0 ((F m) ∘ (G m a))
_ = prod_seq k 0 ((F m) ∘ (G m a)) *

F m (G m a k) := prod_seq_zero_step _ _
_ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *

F m (G m a k) := by rw [ih]
_ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *

([1]_m) := by rw [FG_not_rp h1 h2]
_ = [a]_m ^ (num_rp_below m k) *

(prod_seq k 0 (F m) * ([1]_m)) := by ring
_ = [a]_m ^ (num_rp_below m (k + 1)) *

prod_seq (k + 1) 0 (F m) := by
rw [num_rp_below_step_not_rp h2, prod_seq_zero_step,
F_not_rp_def h2]

done
done

done

The lemma FG_prod, in the case k = m, tells us that

prod_seq m 0 ((F m) ∘ (G m a)) = [a]_m ^ (phi m) * prod_seq m 0 (F m).

In other words, we have proven that the FG-product is [a]_m ^ (phi m) times the F-product.

And now we come to the central idea in the proof of Theorem_7_4_2: the congruence classes
that are multiplied in the FG-product are exactly the same as the congruence classes multiplied
in the F-product, but listed in a different order. The reason for this is that the function G
m a permutes the natural numbers less than m. Since multiplication of congruence classes is
commutative and associative, it follows that the FG-product and the F-product are equal.

To prove these claims, we first define what it means for a function to permute the natural
numbers less than a natural number n.

def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n

def one_one_below (n : Nat) (g : Nat → Nat) : Prop :=
∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

244

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

def onto_below (n : Nat) (g : Nat → Nat) : Prop :=
∀ k < n, ∃ i < n, g i = k

def perm_below (n : Nat) (g : Nat → Nat) : Prop :=
maps_below n g ∧ one_one_below n g ∧ onto_below n g

The proofs of our next two lemmas are somewhat long. We state them now, but put off
discussion of their proofs until the end of the section. The first lemma says that, if m and a are
relatively prime, then G m a permutes the natural numbers less than m, and the second says
that permuting the terms of a product does not change the value of the product.

lemma G_perm_below {m a : Nat} [NeZero m]
(h1 : rel_prime m a) : perm_below m (G m a)

lemma perm_prod {m : Nat} (f : Nat → ZMod m) :
∀ (n : Nat), ∀ (g : Nat → Nat), perm_below n g →

prod_seq n 0 f = prod_seq n 0 (f ∘ g)

There is just one more fact we need before we can prove Theorem_7_4_2: all of the factors in
the F-product are invertible, and therefore the F-product is invertible:

lemma F_invertible (m i : Nat) : invertible (F m i) := by
by_cases h : rel_prime m i
· -- Case 1. h : rel_prime m i

rewrite [F_rp_def h]
show invertible [i]_m from (Theorem_7_3_7 m i).rtl h
done

· -- Case 2. h : ¬rel_prime m i
rewrite [F_not_rp_def h]
apply Exists.intro [1]_m
show [1]_m * [1]_m = [1]_m from Theorem_7_3_6_7 [1]_m
done

done

lemma Fprod_invertible (m : Nat) :
∀ (k : Nat), invertible (prod_seq k 0 (F m)) := by

by_induc
· -- Base Case

apply Exists.intro [1]_m
show prod_seq 0 0 (F m) * [1]_m = [1]_m from

calc prod_seq 0 0 (F m) * [1]_m

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

245

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

_ = [1]_m * [1]_m := by rw [prod_seq_base]
_ = [1]_m := Theorem_7_3_6_7 ([1]_m)

done
· -- Induction Step

fix k : Nat
assume ih : invertible (prod_seq k 0 (F m))
rewrite [prod_seq_zero_step]
show invertible (prod_seq k 0 (F m) * (F m k)) from

(prod_inv_iff_inv ih (F m k)).rtl (F_invertible m k)
done

done

We now have everything we need to prove Theorem_7_4_2:

theorem Theorem_7_4_2 {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
[a]_m ^ (phi m) = [1]_m := by

have h2 : invertible (prod_seq m 0 (F m)) := Fprod_invertible m m
obtain (Y : ZMod m) (h3 : prod_seq m 0 (F m) * Y = [1]_m) from h2
show [a]_m ^ (phi m) = [1]_m from

calc [a]_m ^ (phi m)
_ = [a]_m ^ (phi m) * [1]_m := (Theorem_7_3_6_7 _).symm
_ = [a]_m ^ (phi m) * (prod_seq m 0 (F m) * Y) := by rw [h3]
_ = ([a]_m ^ (phi m) * prod_seq m 0 (F m)) * Y := by ring
_ = prod_seq m 0 (F m ∘ G m a) * Y := by rw [FG_prod h1 m, phi_def]
_ = prod_seq m 0 (F m) * Y := by

rw [perm_prod (F m) m (G m a) (G_perm_below h1)]
_ = [1]_m := by rw [h3]

done

Rephrasing this theorem in terms of numbers gives us the usual statement of Euler’s theorem:

lemma Exercise_7_4_5_Int (m : Nat) (a : Int) :
∀ (n : Nat), [a]_m ^ n = [a ^ n]_m := sorry

lemma Exercise_7_4_5_Nat (m a n : Nat) :
[a]_m ^ n = [a ^ n]_m := by

rewrite [Exercise_7_4_5_Int]
rfl
done

theorem Euler's_theorem {m a : Nat} [NeZero m]
(h1 : rel_prime m a) : a ^ (phi m) ≡ 1 (MOD m) := by

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

246

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

have h2 : [a]_m ^ (phi m) = [1]_m := Theorem_7_4_2 h1
rewrite [Exercise_7_4_5_Nat m a (phi m)] at h2

--h2 : [a ^ phi m]_m = [1]_m
show a ^ (phi m) ≡ 1 (MOD m) from (cc_eq_iff_congr _ _ _).ltr h2
done

#eval gcd 10 7 --Answer: 1. So 10 and 7 are relatively prime

#eval 7 ^ phi 10 --Answer: 2401, which is congruent to 1 mod 10.

We now turn to the two lemmas whose proofs we skipped over, G_perm_below and perm_prod.
To prove G_perm_below, we must prove three facts: maps_below m (G m a), one_one_below m (G
m a), and onto_below m (G m a). The first is straightforward:

lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by
define --Goal : ∀ i < m, G m a i < m
fix i : Nat
assume h1 : i < m
rewrite [G_def] --Goal : a * i % m < m
show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m)
done

For the second and third, we start with lemmas that are reminiscent of Theorem 5.3.3.

lemma right_inv_onto_below {n : Nat} {g g' : Nat → Nat}
(h1 : ∀ i < n, g (g' i) = i) (h2 : maps_below n g') :
onto_below n g := by

define at h2; define
fix k : Nat
assume h3 : k < n
apply Exists.intro (g' k)
show g' k < n ∧ g (g' k) = k from And.intro (h2 k h3) (h1 k h3)
done

lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat}
(h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry

To apply these lemmas with g = G m a, we need a function to play the role of g'. A natural
choice is G m a', where a' is chosen so that [a']_m is the multiplicative inverse of [a]_m. We
know from earlier work that if m and a are relatively prime then the multiplicative inverse
of [a]_m is [gcd_c2 m a]_m. However, in the notation G m a', we can’t let a' = gcd_c2 m a,
because a' must be a natural number and gcd_c2 a is an integer. And we can’t simply coerce

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

247

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

an integer to be a natural number—what if it’s negative? But we know [gcd_c2 m a]_m =
[(gcd_c2 m a) % m]_m and 0 ≤ (gcd_c2 m a) % m, and there is a function, Int.toNat, that will
convert a nonnegative integer to a natural number. So we make the following definitions:

def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m)

def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i

Now Ginv m a can play the role of g' in the last two lemmas. We’ll skip the details and just
summarize the results.

lemma Ginv_right_inv {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
∀ i < m, G m a (Ginv m a i) = i := sorry

lemma Ginv_left_inv {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
∀ i < m, Ginv m a (G m a i) = i := sorry

lemma Ginv_maps_below (m a : Nat) [NeZero m] :
maps_below m (Ginv m a) := G_maps_below m (inv_mod m a)

lemma G_one_one_below {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
one_one_below m (G m a) :=

left_inv_one_one_below (Ginv_left_inv h1)

lemma G_onto_below {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
onto_below m (G m a) :=

right_inv_onto_below (Ginv_right_inv h1) (Ginv_maps_below m a)

lemma G_perm_below {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
perm_below m (G m a) := And.intro (G_maps_below m a)

(And.intro (G_one_one_below h1) (G_onto_below h1))

Finally, we turn to the proof of perm_prod. Our proof will be by mathematical induction. In
the induction step, our induction hypothesis will be

∀ (g : Nat → Nat), perm_below n g →
prod_seq n 0 f = prod_seq n 0 (f ∘ g),

and we will have to prove

∀ (g : Nat → Nat), perm_below (n + 1) g →
prod_seq (n + 1) 0 f = prod_seq (n + 1) 0 (f ∘ g).

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

248

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

To prove this, we’ll introduce an arbitrary function g : Nat → Nat and assume perm_below
(n + 1) g. How can we make use of the inductive hypothesis? Here’s the key idea: Since g
permutes the numbers below n + 1, there must be some u ≤ n such that g u = n. Now let s
be a function that swaps u and n, but leaves all other numbers fixed. In other words, s u = n,
s n = u, and s i = i if i ≠ u and i ≠ n. It is not hard to show that s permutes the numbers
below n + 1, and using that fact we can prove that g ∘ s permutes the numbers below n + 1.
But notice that

(g ∘ s) n = g (s n) = g u = n.

In other words, g ∘ s leaves n fixed. Using that fact, we’ll be able to prove that g ∘ s permutes
the numbers below n. We can therefore apply the inductive hypothesis to g ∘ s, which leads
to the conclusion

prod_seq n 0 f = prod_seq n 0 (f ∘ g ∘ s).

Since we also have (f ∘ g ∘ s) n = f ((g ∘ s) n) = f n, we can extend this to

prod_seq (n + 1) 0 f = prod_seq (n + 1) 0 (f ∘ g ∘ s).

Finally, we can then reach the required conclusion by proving

prod_seq (n + 1) 0 (f ∘ g ∘ s) = prod_seq (n + 1) 0 (f ∘ g).

To carry out this plan, we begin by defining our “swapping” function and proving its proper-
ties.

def swap (u v i : Nat) : Nat :=
if i = u then v else if i = v then u else i

lemma swap_fst (u v : Nat) : swap u v u = v := by
define : swap u v u

--Goal : (if u = u then v else if u = v then u else u) = v
have h : u = u := by rfl
rewrite [if_pos h]
rfl
done

lemma swap_snd (u v : Nat) : swap u v v = u := sorry

lemma swap_perm_below {u v n} (h1 : u < n) (h2 : v < n) :
perm_below n (swap u v) := sorry

For the swapping function s in the proof outline above, we’ll use swap u n. To prove that g ∘
swap u n permutes the numbers below n, we’ll need two lemmas:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

249

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

lemma comp_perm_below {n : Nat} {f g : Nat → Nat}
(h1 : perm_below n f) (h2 : perm_below n g) :
perm_below n (f ∘ g) := sorry

lemma perm_below_fixed {n : Nat} {g : Nat → Nat}
(h1 : perm_below (n + 1) g) (h2 : g n = n) : perm_below n g := sorry

For the final step of the proof, we’ll need several lemmas

lemma break_prod_twice {m u j n : Nat} (f : Nat → ZMod m)
(h1 : n = u + 1 + j) : prod_seq (n + 1) 0 f =

prod_seq u 0 f * f u * prod_seq j (u + 1) f * f n := sorry

lemma swap_prod_eq_prod_below {m u n : Nat} (f : Nat → ZMod m)
(h1 : u ≤ n) : prod_seq u 0 (f ∘ swap u n) = prod_seq u 0 f := sorry

lemma swap_prod_eq_prod_between {m u j n : Nat} (f : Nat → ZMod m)
(h1 : n = u + 1 + j) : prod_seq j (u + 1) (f ∘ swap u n) =

prod_seq j (u + 1) f := sorry

lemma trivial_swap (u : Nat) : swap u u = id := sorry

Using these lemmas, we can prove the fact we’ll need in the final step.

lemma swap_prod_eq_prod {m u n : Nat} (f : Nat → ZMod m) (h1 : u ≤ n) :
prod_seq (n + 1) 0 (f ∘ swap u n) = prod_seq (n + 1) 0 f := by

by_cases h2 : u = n
· -- Case 1. h2 : u = n

rewrite [h2, trivial_swap n]
--Goal : prod_seq (n + 1) 0 (f ∘ id) = prod_seq (n + 1) 0 f

rfl
done

· -- Case 2. h2 : ¬u = n
have h3 : u + 1 ≤ n := Nat.lt_of_le_of_ne h1 h2
obtain (j : Nat) (h4 : n = u + 1 + j) from Nat.exists_eq_add_of_le h3
have break_f : prod_seq (n + 1) 0 f =

prod_seq u 0 f * f u * prod_seq j (u + 1) f * f n :=
break_prod_twice f h4

have break_fs : prod_seq (n + 1) 0 (f ∘ swap u n) =
prod_seq u 0 (f ∘ swap u n) * (f ∘ swap u n) u *
prod_seq j (u + 1) (f ∘ swap u n) * (f ∘ swap u n) n :=

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

250

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

break_prod_twice (f ∘ swap u n) h4
have f_eq_fs_below : prod_seq u 0 (f ∘ swap u n) =

prod_seq u 0 f := swap_prod_eq_prod_below f h1
have f_eq_fs_btwn : prod_seq j (u + 1) (f ∘ swap u n) =

prod_seq j (u + 1) f := swap_prod_eq_prod_between f h4
show prod_seq (n + 1) 0 (f ∘ swap u n) = prod_seq (n + 1) 0 f from

calc prod_seq (n + 1) 0 (f ∘ swap u n)
_ = prod_seq u 0 (f ∘ swap u n) * (f ∘ swap u n) u *

prod_seq j (u + 1) (f ∘ swap u n) * (f ∘ swap u n) n :=
break_fs

_ = prod_seq u 0 f * (f ∘ swap u n) u *
prod_seq j (u + 1) f * (f ∘ swap u n) n := by

rw [f_eq_fs_below, f_eq_fs_btwn]
_ = prod_seq u 0 f * f (swap u n u) *

prod_seq j (u + 1) f * f (swap u n n) := by rfl
_ = prod_seq u 0 f * f n * prod_seq j (u + 1) f * f u := by

rw [swap_fst, swap_snd]
_ = prod_seq u 0 f * f u * prod_seq j (u + 1) f * f n := by ring
_ = prod_seq (n + 1) 0 f := break_f.symm

done
done

We finally have all the pieces in place to prove perm_prod:

lemma perm_prod {m : Nat} (f : Nat → ZMod m) :
∀ (n : Nat), ∀ (g : Nat → Nat), perm_below n g →

prod_seq n 0 f = prod_seq n 0 (f ∘ g) := by
by_induc
· -- Base Case

fix g : Nat → Nat
assume h1 : perm_below 0 g
rewrite [prod_seq_base, prod_seq_base]
rfl
done

· -- Induction Step
fix n : Nat
assume ih : ∀ (g : Nat → Nat), perm_below n g →

prod_seq n 0 f = prod_seq n 0 (f ∘ g)
fix g : Nat → Nat
assume g_pb : perm_below (n + 1) g
define at g_pb
have g_ob : onto_below (n + 1) g := g_pb.right.right

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

251

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

define at g_ob
have h1 : n < n + 1 := by linarith
obtain (u : Nat) (h2 : u < n + 1 ∧ g u = n) from g_ob n h1
have s_pb : perm_below (n + 1) (swap u n) :=

swap_perm_below h2.left h1
have gs_pb_n1 : perm_below (n + 1) (g ∘ swap u n) :=

comp_perm_below g_pb s_pb
have gs_fix_n : (g ∘ swap u n) n = n :=

calc (g ∘ swap u n) n
_ = g (swap u n n) := by rfl
_ = g u := by rw [swap_snd]
_ = n := h2.right

have gs_pb_n : perm_below n (g ∘ swap u n) :=
perm_below_fixed gs_pb_n1 gs_fix_n

have gs_prod : prod_seq n 0 f = prod_seq n 0 (f ∘ (g ∘ swap u n)) :=
ih (g ∘ swap u n) gs_pb_n

have h3 : u ≤ n := by linarith
show prod_seq (n + 1) 0 f = prod_seq (n + 1) 0 (f ∘ g) from

calc prod_seq (n + 1) 0 f
_ = prod_seq n 0 f * f n := prod_seq_zero_step n f
_ = prod_seq n 0 (f ∘ (g ∘ swap u n)) *

f ((g ∘ swap u n) n) := by rw [gs_prod, gs_fix_n]
_ = prod_seq n 0 (f ∘ g ∘ swap u n) *

(f ∘ g ∘ swap u n) n := by rfl
_ = prod_seq (n + 1) 0 (f ∘ g ∘ swap u n) :=

(prod_seq_zero_step n (f ∘ g ∘ swap u n)).symm
_ = prod_seq (n + 1) 0 ((f ∘ g) ∘ swap u n) := by rfl
_ = prod_seq (n + 1) 0 (f ∘ g) := swap_prod_eq_prod (f ∘ g) h3

done
done

There is one more theorem that is proven in Section 7.4 of HTPI : Theorem 7.4.4, which says
that 𝜑 is a multiplicative function. The proof requires ideas that we will not develop in Lean
until Chapter 8, so we will put off the proof until Section 8.1½.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

252

https://doi.org/10.1017/9781108539890

7.4. Euler’s Theorem

Exercises

1. --Hint: Use induction.
--For the base case, compute [a]_m ^ 0 * [1]_m in two ways:
--by Theorem_7_3_6_7, [a] ^ 0 * [1]_m = [a]_m ^ 0
--by ring, [a]_m ^ 0 * [1]_m = [1]_m.
lemma Exercise_7_4_5_Int (m : Nat) (a : Int) :

∀ (n : Nat), [a]_m ^ n = [a ^ n]_m := sorry

2. lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat}
(h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry

3. lemma comp_perm_below {n : Nat} {f g : Nat → Nat}
(h1 : perm_below n f) (h2 : perm_below n g) :
perm_below n (f ∘ g) := sorry

4. lemma perm_below_fixed {n : Nat} {g : Nat → Nat}
(h1 : perm_below (n + 1) g) (h2 : g n = n) : perm_below n g := sorry

5. lemma Lemma_7_4_6 {a b c : Nat} :
rel_prime (a * b) c ↔ rel_prime a c ∧ rel_prime b c := sorry

6. example {m a : Nat} [NeZero m] (h1 : rel_prime m a) :
a ^ (phi m + 1) ≡ a (MOD m) := sorry

7. theorem Like_Exercise_7_4_11 {m a p : Nat} [NeZero m]
(h1 : rel_prime m a) (h2 : p + 1 = phi m) :
[a]_m * [a ^ p]_m = [1]_m := sorry

8. theorem Like_Exercise_7_4_12 {m a p q k : Nat} [NeZero m]
(h1 : rel_prime m a) (h2 : p = q + (phi m) * k) :
a ^ p ≡ a ^ q (MOD m) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

253

https://doi.org/10.1017/9781108539890

7.5. Public-Key Cryptography

7.5. Public-Key Cryptography

Section 7.5 of HTPI discusses the RSA public-key cryptography system. The system is based
on the following theorem:

theorem Theorem_7_5_1 (p q n e d k m c : Nat)
(p_prime : prime p) (q_prime : prime q) (p_ne_q : p ≠ q)
(n_pq : n = p * q) (ed_congr_1 : e * d = k * (p - 1) * (q - 1) + 1)
(h1 : [m]_n ^ e = [c]_n) : [c]_n ^ d = [m]_n

For an explanation of how the RSA system works and why Theorem_7_5_1 justifies it, see HTPI.
Here we will focus on proving the theorem in Lean.

We will be applying Euler’s theorem to the prime numbers p and q, so we will need to know
how to compute phi p and phi q. Fortunately, there is a simple formula we can use.

lemma num_rp_prime {p : Nat} (h1 : prime p) :
∀ k < p, num_rp_below p (k + 1) = k := sorry

lemma phi_prime {p : Nat} (h1 : prime p) : phi p = p - 1 := by
have h2 : 1 ≤ p := prime_pos h1
have h3 : p - 1 + 1 = p := Nat.sub_add_cancel h2
have h4 : p - 1 < p := by linarith
have h5 : num_rp_below p (p - 1 + 1) = p - 1 :=

num_rp_prime h1 (p - 1) h4
rewrite [h3] at h5
show phi p = p - 1 from h5
done

We will also need to use Lemma 7.4.5 from HTPI. To prove that lemma in Lean, we will use
Theorem_7_2_2, which says that for natural numbers a, b, and c, if c ∣ a * b and c and a
are relatively prime, then c ∣ b. But we will need to extend the theorem to allow b to be
an integer rather than a natural number. To prove this extension, we use the Lean function
Int.natAbs : Int → Nat, which computes the absolute value of an integer. Lean knows several
theorems about this function:

@Int.natCast_dvd : ∀ {n : ℤ} {m : ℕ}, ↑m ∣ n ↔ m ∣ Int.natAbs n

Int.natAbs_mul : ∀ (a b : ℤ),
Int.natAbs (a * b) = Int.natAbs a * Int.natAbs b

Int.natAbs_ofNat : ∀ (n : ℕ), Int.natAbs ↑n = n

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

254

https://doi.org/10.1017/9781108539890

7.5. Public-Key Cryptography

With the help of these theorems, our extended version of Theorem_7_2_2 follows easily from
the original version:

theorem Theorem_7_2_2_Int {a c : Nat} {b : Int}
(h1 : ↑c ∣ ↑a * b) (h2 : rel_prime a c) : ↑c ∣ b := by

rewrite [Int.natCast_dvd, Int.natAbs_mul,
Int.natAbs_ofNat] at h1 --h1 : c ∣ a * Int.natAbs b

rewrite [Int.natCast_dvd] --Goal : c ∣ Int.natAbs b
show c ∣ Int.natAbs b from Theorem_7_2_2 h1 h2
done

With that preparation, we can now prove Lemma_7_4_5.

lemma Lemma_7_4_5 {m n : Nat} (a b : Int) (h1 : rel_prime m n) :
a ≡ b (MOD m * n) ↔ a ≡ b (MOD m) ∧ a ≡ b (MOD n) := by

apply Iff.intro
· -- (→)

assume h2 : a ≡ b (MOD m * n)
obtain (j : Int) (h3 : a - b = (m * n) * j) from h2
apply And.intro
· -- Proof of a ≡ b (MOD m)

apply Exists.intro (n * j)
show a - b = m * (n * j) from

calc a - b
_ = m * n * j := h3
_ = m * (n * j) := by ring

done
· -- Proof of a ≡ b (MOD n)

apply Exists.intro (m * j)
show a - b = n * (m * j) from

calc a - b
_ = m * n * j := h3
_ = n * (m * j) := by ring

done
done

· -- (←)
assume h2 : a ≡ b (MOD m) ∧ a ≡ b (MOD n)
obtain (j : Int) (h3 : a - b = m * j) from h2.left
have h4 : (↑n : Int) ∣ a - b := h2.right
rewrite [h3] at h4 --h4 : ↑n ∣ ↑m * j
have h5 : ↑n ∣ j := Theorem_7_2_2_Int h4 h1
obtain (k : Int) (h6 : j = n * k) from h5

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

255

https://doi.org/10.1017/9781108539890

7.5. Public-Key Cryptography

apply Exists.intro k --Goal : a - b = ↑(m * n) * k
rewrite [Nat.cast_mul] --Goal : a - b = ↑m * ↑n * k
show a - b = (m * n) * k from

calc a - b
_ = m * j := h3
_ = m * (n * k) := by rw [h6]
_ = (m * n) * k := by ring

done
done

Finally, we will need an exercise from Section 7.2, and we will need to know NeZero p for prime
numbers p:

theorem rel_prime_symm {a b : Nat} (h : rel_prime a b) :
rel_prime b a := sorry

lemma prime_NeZero {p : Nat} (h : prime p) : NeZero p := by
rewrite [neZero_iff] --Goal : p ≠ 0
define at h
linarith
done

Much of the reasoning about modular arithmetic that we need for the proof of Theorem_7_5_1
is contained in a technical lemma:

lemma Lemma_7_5_1 {p e d m c s : Nat} {t : Int}
(h1 : prime p) (h2 : e * d = (p - 1) * s + 1)
(h3 : m ^ e - c = p * t) :
c ^ d ≡ m (MOD p) := by

have h4 : m ^ e ≡ c (MOD p) := Exists.intro t h3
have h5 : [m ^ e]_p = [c]_p := (cc_eq_iff_congr _ _ _).rtl h4
rewrite [←Exercise_7_4_5_Nat] at h5 --h5 : [m]_p ^ e = [c]_p
by_cases h6 : p ∣ m
· -- Case 1. h6 : p ∣ m

have h7 : m ≡ 0 (MOD p) := by
obtain (j : Nat) (h8 : m = p * j) from h6
apply Exists.intro (↑j : Int) --Goal : ↑m - 0 = ↑p * ↑j
rewrite [h8, Nat.cast_mul]
ring
done

have h8 : [m]_p = [0]_p := (cc_eq_iff_congr _ _ _).rtl h7
have h9 : e * d ≠ 0 := by

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

256

https://doi.org/10.1017/9781108539890

7.5. Public-Key Cryptography

rewrite [h2]
show (p - 1) * s + 1 ≠ 0 from Nat.add_one_ne_zero _
done

have h10 : (0 : Int) ^ (e * d) = 0 := zero_pow h9
have h11 : [c ^ d]_p = [m]_p :=

calc [c ^ d]_p
_ = [c]_p ^ d := by rw [Exercise_7_4_5_Nat]
_ = ([m]_p ^ e) ^ d := by rw [h5]
_ = [m]_p ^ (e * d) := by ring
_ = [0]_p ^ (e * d) := by rw [h8]
_ = [0 ^ (e * d)]_p := Exercise_7_4_5_Int _ _ _
_ = [0]_p := by rw [h10]
_ = [m]_p := by rw [h8]

show c ^ d ≡ m (MOD p) from (cc_eq_iff_congr _ _ _).ltr h11
done

· -- Case 2. h6 : ¬p ∣ m
have h7 : rel_prime m p := rel_prime_of_prime_not_dvd h1 h6
have h8 : rel_prime p m := rel_prime_symm h7
have h9 : NeZero p := prime_NeZero h1
have h10 : (1 : Int) ^ s = 1 := by ring
have h11 : [c ^ d]_p = [m]_p :=

calc [c ^ d]_p
_ = [c]_p ^ d := by rw [Exercise_7_4_5_Nat]
_ = ([m]_p ^ e) ^ d := by rw [h5]
_ = [m]_p ^ (e * d) := by ring
_ = [m]_p ^ ((p - 1) * s + 1) := by rw [h2]
_ = ([m]_p ^ (p - 1)) ^ s * [m]_p := by ring
_ = ([m]_p ^ (phi p)) ^ s * [m]_p := by rw [phi_prime h1]
_ = [1]_p ^ s * [m]_p := by rw [Theorem_7_4_2 h8]
_ = [1 ^ s]_p * [m]_p := by rw [Exercise_7_4_5_Int]
_ = [1]_p * [m]_p := by rw [h10]
_ = [m]_p * [1]_p := by ring
_ = [m]_p := Theorem_7_3_6_7 _

show c ^ d ≡ m (MOD p) from (cc_eq_iff_congr _ _ _).ltr h11
done

done

Here, finally, is the proof of Theorem_7_5_1:

theorem Theorem_7_5_1 (p q n e d k m c : Nat)
(p_prime : prime p) (q_prime : prime q) (p_ne_q : p ≠ q)
(n_pq : n = p * q) (ed_congr_1 : e * d = k * (p - 1) * (q - 1) + 1)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

257

https://doi.org/10.1017/9781108539890

7.5. Public-Key Cryptography

(h1 : [m]_n ^ e = [c]_n) : [c]_n ^ d = [m]_n := by
rewrite [Exercise_7_4_5_Nat, cc_eq_iff_congr] at h1

--h1 : m ^ e ≡ c (MOD n)
rewrite [Exercise_7_4_5_Nat, cc_eq_iff_congr]

--Goal : c ^ d ≡ m (MOD n)
obtain (j : Int) (h2 : m ^ e - c = n * j) from h1
rewrite [n_pq, Nat.cast_mul] at h2

--h2 : m ^ e - c = p * q * j
have h3 : e * d = (p - 1) * (k * (q - 1)) + 1 := by

rewrite [ed_congr_1]
ring
done

have h4 : m ^ e - c = p * (q * j) := by
rewrite [h2]
ring
done

have congr_p : c ^ d ≡ m (MOD p) := Lemma_7_5_1 p_prime h3 h4
have h5 : e * d = (q - 1) * (k * (p - 1)) + 1 := by

rewrite [ed_congr_1]
ring
done

have h6 : m ^ e - c = q * (p * j) := by
rewrite [h2]
ring
done

have congr_q : c ^ d ≡ m (MOD q) := Lemma_7_5_1 q_prime h5 h6
have h7 : ¬q ∣ p := by

by_contra h8
have h9 : q = 1 ∨ q = p := dvd_prime p_prime h8
disj_syll h9 (prime_not_one q_prime)
show False from p_ne_q h9.symm
done

have h8 : rel_prime p q := rel_prime_of_prime_not_dvd q_prime h7
rewrite [n_pq, Lemma_7_4_5 _ _ h8]
show c ^ d ≡ m (MOD p) ∧ c ^ d ≡ m (MOD q) from

And.intro congr_p congr_q
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

258

https://doi.org/10.1017/9781108539890

7.5. Public-Key Cryptography

Exercises

1. --Hint: Use induction.
lemma num_rp_prime {p : Nat} (h1 : prime p) :

∀ k < p, num_rp_below p (k + 1) = k := sorry

2. lemma three_prime : prime 3 := sorry

3. --Hint: Use the previous exercise, Exercise_7_2_7, and Theorem_7_4_2.
theorem Exercise_7_5_13a (a : Nat) (h1 : rel_prime 561 a) :

a ^ 560 ≡ 1 (MOD 3) := sorry

4. --Hint: Imitate the way Theorem_7_2_2_Int was proven from Theorem_7_2_2.
lemma Theorem_7_2_3_Int {p : Nat} {a b : Int}

(h1 : prime p) (h2 : ↑p ∣ a * b) : ↑p ∣ a ∨ ↑p ∣ b := sorry

5. --Hint: Use the previous exercise.
theorem Exercise_7_5_14b (n : Nat) (b : Int)

(h1 : prime n) (h2 : b ^ 2 ≡ 1 (MOD n)) :
b ≡ 1 (MOD n) ∨ b ≡ -1 (MOD n) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

259

https://doi.org/10.1017/9781108539890

8 Infinite Sets

8.1. Equinumerous Sets

Chapter 8 of HTPI begins by defining a set 𝐴 to be equinumerous with a set 𝐵 if there is
a function 𝑓 ∶ 𝐴 → 𝐵 that is one-to-one and onto. As we will see, in Lean we will need to
phrase this definition somewhat differently. However, we begin by considering some examples
of functions that are one-to-one and onto.

The first example in HTPI is a one-to-one, onto function from ℤ+ to ℤ. We will modify this
example slightly to make it a function fnz from Nat to Int:

def fnz (n : Nat) : Int := if 2 ∣ n then ↑(n / 2) else -↑((n + 1) / 2)

Note that, to get a result of type Int, coercion is necessary. We have specified that the coercion
should be done after the computation of either n / 2 or (n + 1) / 2, with that computation
being done using natural-number arithmetic. Checking a few values of this functions suggests
a simple pattern:

#eval [fnz 0, fnz 1, fnz 2, fnz 3, fnz 4, fnz 5, fnz 6]
--Answer: [0, -1, 1, -2, 2, -3, 3]

Perhaps the easiest way to prove that fnz is one-to-one and onto is to define a function that
turns out to be its inverse. This time, in order to get the right type for the value of the function,
we use the function Int.toNat to convert a nonnegative integer to a natural number.

def fzn (a : Int) : Nat :=
if a ≥ 0 then 2 * Int.toNat a else 2 * Int.toNat (-a) - 1

#eval [fzn 0, fzn (-1), fzn 1, fzn (-2), fzn 2, fzn (-3), fzn 3]
--Answer: [0, 1, 2, 3, 4, 5, 6]

To prove that fzn is the inverse of fnz, we begin by proving lemmas making it easier to compute
the values of these functions

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

260

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

lemma fnz_even (k : Nat) : fnz (2 * k) = ↑k := by
have h1 : 2 ∣ 2 * k := by

apply Exists.intro k
rfl
done

have h2 : fnz (2 * k) = if 2 ∣ 2 * k then ↑(2 * k / 2)
else -↑((2 * k + 1) / 2) := by rfl

rewrite [if_pos h1] at h2 --h2 : fnz (2 * k) = ↑(2 * k / 2)
have h3 : 0 < 2 := by linarith
rewrite [Nat.mul_div_cancel_left k h3] at h2
show fnz (2 * k) = ↑k from h2
done

lemma fnz_odd (k : Nat) : fnz (2 * k + 1) = -↑(k + 1) := sorry

lemma fzn_nat (k : Nat) : fzn ↑k = 2 * k := by rfl

lemma fzn_neg_succ_nat (k : Nat) : fzn (-↑(k + 1)) = 2 * k + 1 := by rfl

Using these lemmas and reasoning by cases, it is straightforward to prove lemmas confirming
that the composition of these functions, in either order, yields the identity function. The cases
for the first lemma are based on an exercise from Section 6.1.

lemma fzn_fnz : fzn ∘ fnz = id := by
apply funext --Goal : ∀ (x : Nat), (fzn ∘ fnz) x = id x
fix n : Nat
rewrite [comp_def] --Goal : fzn (fnz n) = id n
have h1 : nat_even n ∨ nat_odd n := Exercise_6_1_16a1 n
by_cases on h1
· -- Case 1. h1 : nat_even n

obtain (k : Nat) (h2 : n = 2 * k) from h1
rewrite [h2, fnz_even, fzn_nat]
rfl
done

· -- Case 2. h1 : nat_odd n
obtain (k : Nat) (h2 : n = 2 * k + 1) from h1
rewrite [h2, fnz_odd, fzn_neg_succ_nat]
rfl
done

done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

261

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

lemma fnz_fzn : fnz ∘ fzn = id := sorry

By theorems from Chapter 5, it follows that both fnz and fzn are one-to-one and onto.

lemma fzn_one_one : one_to_one fzn := Theorem_5_3_3_1 fzn fnz fnz_fzn

lemma fzn_onto : onto fzn := Theorem_5_3_3_2 fzn fnz fzn_fnz

lemma fnz_one_one : one_to_one fnz := Theorem_5_3_3_1 fnz fzn fzn_fnz

lemma fnz_onto : onto fnz := Theorem_5_3_3_2 fnz fzn fnz_fzn

We’ll give one more example: a one-to-one, onto function fnnn from Nat × Nat to Nat, whose
definition is modeled on a function from ℤ+ × ℤ+ to ℤ+ in HTPI. The definition of fnnn will
use numbers of the form k * (k + 1) / 2. These numbers are sometimes called triangular
numbers, because they count the number of objects in a triangular grid with k rows.

def tri (k : Nat) : Nat := k * (k + 1) / 2

def fnnn (p : Nat × Nat) : Nat := tri (p.1 + p.2) + p.1

lemma fnnn_def (a b : Nat) : fnnn (a, b) = tri (a + b) + a := by rfl

#eval [fnnn (0, 0), fnnn (0, 1), fnnn (1, 0), fnnn (0, 2), fnnn (1, 1)]
--Answer: [0, 1, 2, 3, 4]

Two simple lemmas about tri will help us prove the important properties of fnnn:

lemma tri_step (k : Nat) : tri (k + 1) = tri k + k + 1 := sorry

lemma tri_incr {j k : Nat} (h1 : j ≤ k) : tri j ≤ tri k := sorry

lemma le_of_fnnn_eq {a1 b1 a2 b2 : Nat}
(h1 : fnnn (a1, b1) = fnnn (a2, b2)) : a1 + b1 ≤ a2 + b2 := by

by_contra h2
have h3 : a2 + b2 + 1 ≤ a1 + b1 := by linarith
have h4 : fnnn (a2, b2) < fnnn (a1, b1) :=

calc fnnn (a2, b2)
_ = tri (a2 + b2) + a2 := by rfl
_ < tri (a2 + b2) + (a2 + b2) + 1 := by linarith
_ = tri (a2 + b2 + 1) := (tri_step _).symm
_ ≤ tri (a1 + b1) := tri_incr h3

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

262

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

_ ≤ tri (a1 + b1) + a1 := by linarith
_ = fnnn (a1, b1) := by rfl

linarith
done

lemma fnnn_one_one : one_to_one fnnn := by
fix (a1, b1) : Nat × Nat
fix (a2, b2) : Nat × Nat
assume h1 : fnnn (a1, b1) = fnnn (a2, b2) --Goal : (a1, b1) = (a2, b2)
have h2 : a1 + b1 ≤ a2 + b2 := le_of_fnnn_eq h1
have h3 : a2 + b2 ≤ a1 + b1 := le_of_fnnn_eq h1.symm
have h4 : a1 + b1 = a2 + b2 := by linarith
rewrite [fnnn_def, fnnn_def, h4] at h1

--h1 : tri (a2 + b2) + a1 = tri (a2 + b2) + a2
have h6 : a1 = a2 := Nat.add_left_cancel h1
rewrite [h6] at h4 --h4 : a2 + b1 = a2 + b2
have h7 : b1 = b2 := Nat.add_left_cancel h4
rewrite [h6, h7]
rfl
done

lemma fnnn_onto : onto fnnn := by
define --Goal : ∀ (y : Nat), ∃ (x : Nat × Nat), fnnn x = y
by_induc
· -- Base Case

apply Exists.intro (0, 0)
rfl
done

· -- Induction Step
fix n : Nat
assume ih : ∃ (x : Nat × Nat), fnnn x = n
obtain ((a, b) : Nat × Nat) (h1 : fnnn (a, b) = n) from ih
by_cases h2 : b = 0
· -- Case 1. h2 : b = 0

apply Exists.intro (0, a + 1)
show fnnn (0, a + 1) = n + 1 from

calc fnnn (0, a + 1)
_ = tri (0 + (a + 1)) + 0 := by rfl
_ = tri (a + 1) := by ring
_ = tri a + a + 1 := tri_step a
_ = tri (a + 0) + a + 1 := by ring

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

263

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

_ = fnnn (a, b) + 1 := by rw [h2, fnnn_def]
_ = n + 1 := by rw [h1]

done
· -- Case 2. h2 : b ≠ 0

obtain (k : Nat) (h3 : b = k + 1) from
exists_eq_add_one_of_ne_zero h2

apply Exists.intro (a + 1, k)
show fnnn (a + 1, k) = n + 1 from

calc fnnn (a + 1, k)
_ = tri (a + 1 + k) + (a + 1) := by rfl
_ = tri (a + (k + 1)) + a + 1 := by ring
_ = tri (a + b) + a + 1 := by rw [h3]
_ = fnnn (a, b) + 1 := by rfl
_ = n + 1 := by rw [h1]

done
done

done

Despite these successes with one-to-one, onto functions, we will use a definition of “equinu-
merous” in Lean that is different from the definition in HTPI. There are two reasons for this
change. First of all, the domain of a function in Lean must be a type, but we want to be able
to talk about sets being equinumerous. Secondly, Lean expects functions to be computable; it
regards the definition of a function as an algorithm for computing the value of the function
on any input. This restriction would cause problems with some of our proofs. While there are
ways to overcome these difficulties, they would introduce complications that we can avoid by
using a different approach.

Suppose U and V are types, and we have sets A : Set U and B : Set V. We will define A to be
equinumerous with B if there is a relation R from U to V that defines a one-to-one correspondence
between the elements of A and B. To formulate this precisely, suppose that R has type Rel U V.
We will place three requirements on R. First, we require that the relation R should hold only
between elements of A and B. We say in this case that R is a relation within A and B:

def rel_within {U V : Type} (R : Rel U V) (A : Set U) (B : Set V) : Prop :=
∀ ⦃x : U⦄ ⦃y : V⦄, R x y → x ∈ A ∧ y ∈ B

Notice that in this definition, we have used the same double braces for the quantified variables
x and y that were used in the definition of “subset.” This means that x and y are implicit
arguments, and therefore if we have h1 : rel_within R A B and h2 : R a b, then h1 h2 is a
proof of a ∈ A ∧ b ∈ B. There is no need to specify that a and b are the values to be assigned
to x and y; Lean will figure that out for itself. (To type the double braces ⦃ and ⦄, type \{{
and \}}. There were cases in previous chapters where it would have been appropriate to use
such implicit arguments, but we chose not to do so to avoid confusion. But by now you should

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

264

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

be comfortable enough with Lean that you won’t be confused by this new complication.)

Next, we require that every element of A is related by R to exactly one thing. We say in this
case that R is functional on A:

def fcnl_on {U V : Type} (R : Rel U V) (A : Set U) : Prop :=
∀ ⦃x : U⦄, x ∈ A → ∃! (y : V), R x y

Finally, we impose the same requirement in the other direction: for every element of B, exactly
one thing should be related to it by R. We can express this by saying that the inverse of R
is functional on B. In Chapter 4, we defined the inverse of a set of ordered pairs, but we can
easily convert this to an operation on relations:

def invRel {U V : Type} (R : Rel U V) : Rel V U :=
RelFromExt (inv (extension R))

lemma invRel_def {U V : Type} (R : Rel U V) (u : U) (v : V) :
invRel R v u ↔ R u v := by rfl

We will call R a matching from A to B if it meets the three requirements above:

def matching {U V : Type} (R : Rel U V) (A : Set U) (B : Set V) : Prop :=
rel_within R A B ∧ fcnl_on R A ∧ fcnl_on (invRel R) B

Finally, we say that A is equinumerous with B if there is a matching from A to B, and, as in
HTPI we introduce the notation A ∼ B to indicate that A is equinumerous with B (to enter the
symbol ∼, type \sim or \~).

def equinum {U V : Type} (A : Set U) (B : Set V) : Prop :=
∃ (R : Rel U V), matching R A B

notation:50 A:50 " ∼ " B:50 => equinum A B

Can the examples at the beginning of this section be used to establish that Int ∼ Nat and Nat
× Nat ∼ Nat? Not quite, because Int, Nat, and Nat × Nat are types, not sets. We must talk
about the sets of all objects of those types, not the types themselves, so we introduce another
definition.

def Univ (U : Type) : Set U := {x : U | True}

lemma elt_Univ {U : Type} (u : U) :
u ∈ Univ U := by trivial

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

265

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

For any type U, Univ U is the set of all objects of type U; we might call it the universal set for
the type U. Now we can use the functions defined earlier to prove that Univ Int ∼ Univ Nat
and Univ (Nat × Nat) ∼ Univ Nat. The do this, we must convert the functions into relations
and prove that those relations are matchings. The conversion can be done with the following
function.

def RelWithinFromFunc {U V : Type} (f : U → V) (A : Set U)
(x : U) (y : V) : Prop := x ∈ A ∧ f x = y

This definition says that if we have f : U → V and A : Set U, then RelWithinFromFunc f A is a
relation from U to V that relates any x that is an element of A to f x.

We will say that a function is one-to-one on a set A if it satisfies the definition of one-to-one
when applied to elements of A:

def one_one_on {U V : Type} (f : U → V) (A : Set U) : Prop :=
∀ ⦃x1 x2 : U⦄, x1 ∈ A → x2 ∈ A → f x1 = f x2 → x1 = x2

With all of this preparation, we can now prove that if f is one-to-one on A, then A is equinu-
merous with its image under f.

theorem equinum_image {U V : Type} {A : Set U} {B : Set V} {f : U → V}
(h1 : one_one_on f A) (h2 : image f A = B) : A ∼ B := by

rewrite [←h2]
define --Goal : ∃ (R : Rel U V), matching R A (image f A)
set R : Rel U V := RelWithinFromFunc f A
apply Exists.intro R
define --Goal : rel_within R A (image f A) ∧

--fcnl_on R A ∧ fcnl_on (invRel R) (image f A)
apply And.intro
· -- Proof of rel_within

define --Goal : ∀ ⦃x : U⦄ ⦃y : V⦄, R x y → x ∈ A ∧ y ∈ image f A
fix x : U; fix y : V
assume h3 : R x y --Goal : x ∈ A ∧ y ∈ image f A
define at h3 --h3 : x ∈ A ∧ f x = y
apply And.intro h3.left
define
show ∃ x ∈ A, f x = y from Exists.intro x h3
done

· -- Proofs of fcnl_ons
apply And.intro
· -- Proof of fcnl_on R A

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

266

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

define --Goal : ∀ ⦃x : U⦄, x ∈ A → ∃! (y : V), R x y
fix x : U
assume h3 : x ∈ A
exists_unique
· -- Existence

apply Exists.intro (f x)
define --Goal : x ∈ A ∧ f x = f x
apply And.intro h3
rfl
done

· -- Uniqueness
fix y1 : V; fix y2 : V
assume h4 : R x y1
assume h5 : R x y2 --Goal : y1 = y2
define at h4; define at h5

--h4 : x ∈ A ∧ f x = y1; h5 : x ∈ A ∧ f x = y2
rewrite [h4.right] at h5
show y1 = y2 from h5.right
done

done
· -- Proof of fcnl_on (invRel R) (image f A)

define --Goal : ∀ ⦃x : V⦄, x ∈ image f A → ∃! (y : U), invRel R x y
fix y : V
assume h3 : y ∈ image f A
obtain (x : U) (h4 : x ∈ A ∧ f x = y) from h3
exists_unique
· -- Existence

apply Exists.intro x
define
show x ∈ A ∧ f x = y from h4
done

· -- Uniqueness
fix x1 : U; fix x2 : U
assume h5 : invRel R y x1
assume h6 : invRel R y x2
define at h5; define at h6

--h5 : x1 ∈ A ∧ f x1 = y; h6 : x2 ∈ A ∧ f x2 = y
rewrite [←h6.right] at h5
show x1 = x2 from h1 h5.left h6.left h5.right
done

done
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

267

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

done

To apply this result to the functions introduced at the beginning of this section, we will want
to use Univ U for the set A in the theorem equinum_image:

lemma one_one_on_of_one_one {U V : Type} {f : U → V}
(h : one_to_one f) (A : Set U) : one_one_on f A := sorry

theorem equinum_Univ {U V : Type} {f : U → V}
(h1 : one_to_one f) (h2 : onto f) : Univ U ∼ Univ V := by

have h3 : image f (Univ U) = Univ V := by
apply Set.ext
fix v : V
apply Iff.intro
· -- (→)

assume h3 : v ∈ image f (Univ U)
show v ∈ Univ V from elt_Univ v
done

· -- (←)
assume h3 : v ∈ Univ V
obtain (u : U) (h4 : f u = v) from h2 v
apply Exists.intro u
apply And.intro _ h4
show u ∈ Univ U from elt_Univ u
done

done
show Univ U ∼ Univ V from

equinum_image (one_one_on_of_one_one h1 (Univ U)) h3
done

theorem Z_equinum_N : Univ Int ∼ Univ Nat :=
equinum_Univ fzn_one_one fzn_onto

theorem NxN_equinum_N : Univ (Nat × Nat) ∼ Univ Nat :=
equinum_Univ fnnn_one_one fnnn_onto

Theorem 8.1.3 in HTPI shows that ∼ is reflexive, symmetric, and transitive. We’ll prove
the three parts of this theorem separately. To prove that ∼ is reflexive, we use the identity
function.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

268

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

lemma id_one_one_on {U : Type} (A : Set U) : one_one_on id A := sorry

lemma image_id {U : Type} (A : Set U) : image id A = A := sorry

theorem Theorem_8_1_3_1 {U : Type} (A : Set U) : A ∼ A :=
equinum_image (id_one_one_on A) (image_id A)

For symmetry, we show that the inverse of a matching is also a matching.

lemma inv_inv {U V : Type} (R : Rel U V) : invRel (invRel R) = R := by rfl

lemma inv_match {U V : Type} {R : Rel U V} {A : Set U} {B : Set V}
(h : matching R A B) : matching (invRel R) B A := by

define --Goal : rel_within (invRel R) B A ∧
--fcnl_on (invRel R) B ∧ fcnl_on (invRel (invRel R)) A

define at h --h : rel_within R A B ∧ fcnl_on R A ∧ fcnl_on (invRel R) B
apply And.intro
· -- Proof that rel_within (invRel R) B A

define --Goal : ∀ ⦃x : V⦄ ⦃y : U⦄, invRel R x y → x ∈ B ∧ y ∈ A
fix y : V; fix x : U
assume h1 : invRel R y x
define at h1 --h1 : R x y
have h2 : x ∈ A ∧ y ∈ B := h.left h1
show y ∈ B ∧ x ∈ A from And.intro h2.right h2.left
done

· -- proof that fcnl_on (inv R) B ∧ fcnl_on (inv (inv R)) A
rewrite [inv_inv]
show fcnl_on (invRel R) B ∧ fcnl_on R A from

And.intro h.right.right h.right.left
done

done

theorem Theorem_8_1_3_2 {U V : Type} {A : Set U} {B : Set V}
(h : A ∼ B) : B ∼ A := by

obtain (R : Rel U V) (h1 : matching R A B) from h
apply Exists.intro (invRel R)
show matching (invRel R) B A from inv_match h1
done

The proof of transitivity is a bit more involved. In this proof, as well as some later proofs, we
find it useful to separate out the existence and uniqueness parts of the definition of fcnl_on:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

269

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

lemma fcnl_exists {U V : Type} {R : Rel U V} {A : Set U} {x : U}
(h1 : fcnl_on R A) (h2 : x ∈ A) : ∃ (y : V), R x y := by

define at h1
obtain (y : V) (h3 : R x y)

(h4 : ∀ (y_1 y_2 : V), R x y_1 → R x y_2 → y_1 = y_2) from h1 h2
show ∃ (y : V), R x y from Exists.intro y h3
done

lemma fcnl_unique {U V : Type}
{R : Rel U V} {A : Set U} {x : U} {y1 y2 : V} (h1 : fcnl_on R A)
(h2 : x ∈ A) (h3 : R x y1) (h4 : R x y2) : y1 = y2 := by

define at h1
obtain (z : V) (h5 : R x z)

(h6 : ∀ (y_1 y_2 : V), R x y_1 → R x y_2 → y_1 = y_2) from h1 h2
show y1 = y2 from h6 y1 y2 h3 h4
done

To prove transitivity, we will show that a composition of matchings is a matching. Once again
we must convert our definition of composition of sets of ordered pairs into an operation on
relations. A few preliminary lemmas help with the proof.

def compRel {U V W : Type} (S : Rel V W) (R : Rel U V) : Rel U W :=
RelFromExt (comp (extension S) (extension R))

lemma compRel_def {U V W : Type}
(S : Rel V W) (R : Rel U V) (u : U) (w : W) :
compRel S R u w ↔ ∃ (x : V), R u x ∧ S x w := by rfl

lemma inv_comp {U V W : Type} (R : Rel U V) (S : Rel V W) :
invRel (compRel S R) = compRel (invRel R) (invRel S) :=

calc invRel (compRel S R)
_ = RelFromExt (inv (comp (extension S) (extension R))) := by rfl
_ = RelFromExt (comp (inv (extension R)) (inv (extension S))) := by

rw [Theorem_4_2_5_5]
_ = compRel (invRel R) (invRel S) := by rfl

lemma comp_fcnl {U V W : Type} {R : Rel U V} {S : Rel V W}
{A : Set U} {B : Set V} {C : Set W} (h1 : matching R A B)
(h2 : matching S B C) : fcnl_on (compRel S R) A := by

define; define at h1; define at h2
fix a : U
assume h3 : a ∈ A

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

270

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

obtain (b : V) (h4 : R a b) from fcnl_exists h1.right.left h3
have h5 : a ∈ A ∧ b ∈ B := h1.left h4
obtain (c : W) (h6 : S b c) from fcnl_exists h2.right.left h5.right
exists_unique
· -- Existence

apply Exists.intro c
rewrite [compRel_def]
show ∃ (x : V), R a x ∧ S x c from Exists.intro b (And.intro h4 h6)
done

· -- Uniqueness
fix c1 : W; fix c2 : W
assume h7 : compRel S R a c1
assume h8 : compRel S R a c2 --Goal : c1 = c2
rewrite [compRel_def] at h7
rewrite [compRel_def] at h8
obtain (b1 : V) (h9 : R a b1 ∧ S b1 c1) from h7
obtain (b2 : V) (h10 : R a b2 ∧ S b2 c2) from h8
have h11 : b1 = b := fcnl_unique h1.right.left h3 h9.left h4
have h12 : b2 = b := fcnl_unique h1.right.left h3 h10.left h4
rewrite [h11] at h9
rewrite [h12] at h10
show c1 = c2 from

fcnl_unique h2.right.left h5.right h9.right h10.right
done

done

lemma comp_match {U V W : Type} {R : Rel U V} {S : Rel V W}
{A : Set U} {B : Set V} {C : Set W} (h1 : matching R A B)
(h2 : matching S B C) : matching (compRel S R) A C := by

define
apply And.intro
· -- Proof of rel_within (compRel S R) A C

define
fix a : U; fix c : W
assume h3 : compRel S R a c
rewrite [compRel_def] at h3
obtain (b : V) (h4 : R a b ∧ S b c) from h3
have h5 : a ∈ A ∧ b ∈ B := h1.left h4.left
have h6 : b ∈ B ∧ c ∈ C := h2.left h4.right
show a ∈ A ∧ c ∈ C from And.intro h5.left h6.right
done

· -- Proof of fcnl_on statements

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

271

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

apply And.intro
· -- Proof of fcnl_on (compRel S R) A

show fcnl_on (compRel S R) A from comp_fcnl h1 h2
done

· -- Proof of fcnl_on (invRel (compRel S R)) Z
rewrite [inv_comp]
have h3 : matching (invRel R) B A := inv_match h1
have h4 : matching (invRel S) C B := inv_match h2
show fcnl_on (compRel (invRel R) (invRel S)) C from comp_fcnl h4 h3
done

done
done

theorem Theorem_8_1_3_3 {U V W : Type} {A : Set U} {B : Set V} {C : Set W}
(h1 : A ∼ B) (h2 : B ∼ C) : A ∼ C := by

obtain (R : Rel U V) (h3 : matching R A B) from h1
obtain (S : Rel V W) (h4 : matching S B C) from h2
apply Exists.intro (compRel S R)
show matching (compRel S R) A C from comp_match h3 h4
done

Now that we have a basic understanding of the concept of equinumerous sets, we can use this
concept to make a number of definitions. For any natural number 𝑛, HTPI defines 𝐼𝑛 to be
the set {1, 2, … , 𝑛}, and then it defines a set to be finite if it is equinumerous with 𝐼𝑛, for some
𝑛. In Lean, it is a bit more convenient to use sets of the form {0, 1, … , 𝑛−1}. With that small
change, we can repeat the definitions of finite, denumerable, and countable in HTPI.

def I (n : Nat) : Set Nat := {k : Nat | k < n}

lemma I_def (k n : Nat) : k ∈ I n ↔ k < n := by rfl

def finite {U : Type} (A : Set U) : Prop :=
∃ (n : Nat), I n ∼ A

def denum {U : Type} (A : Set U) : Prop :=
Univ Nat ∼ A

lemma denum_def {U : Type} (A : Set U) : denum A ↔ Univ Nat ∼ A := by rfl

def ctble {U : Type} (A : Set U) : Prop :=
finite A ∨ denum A

Theorem 8.1.5 in HTPI gives two useful ways to characterize countable sets. The proof of the

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

272

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

theorem in HTPI uses the fact that every set of natural numbers is countable. HTPI gives an
intuitive explanation of why this is true, but of course in Lean an intuitive explanation won’t
do. So before proving a version of Theorem 8.1.5, we sketch a proof that every set of natural
numbers is countable.

Suppose A has type Set Nat. To prove that A is countable, we will define a relation enum A
that “enumerates” the elements of A by relating 0 to the smallest element of A, 1 to the next
element of A, 2 to the next, and so on. How do we tell which natural number should be related
to any element n of A? Notice that if n is the smallest element of A, then there are 0 elements
of A that are smaller than n; if it is second smallest element of A, then there is 1 element of A
that is smaller than n; and so on. Thus, enum A should relate a natural number s to n if and
only if the number of elements of A that are smaller than n is s. This suggests a plan: First
we define a proposition num_elts_below A n s saying that the number of elements of A that are
smaller than n is s. Then we use this proposition to define the relation enum A, and finally we
show that enum A is a matching that can be used to prove that A is countable.

The definition of num_elts_below is recursive. The recursive step relates the number of elements
of A below n + 1 to the number of elements below n. There are two possibilities: either n ∈
A and the number of elements below n + 1 is one larger than the number below n, or n ∉ A
and the two numbers are the same. (This may remind you of the recursion we used to define
num_rp_below in Chapter 7.)

def num_elts_below (A : Set Nat) (m s : Nat) : Prop :=
match m with

| 0 => s = 0
| n + 1 => (n ∈ A ∧ 1 ≤ s ∧ num_elts_below A n (s - 1)) ∨

(n ∉ A ∧ num_elts_below A n s)

def enum (A : Set Nat) (s n : Nat) : Prop := n ∈ A ∧ num_elts_below A n s

The details of the proof that enum A is the required matching are long. We’ll skip them here,
but you can find them in the HTPI Lean package.

lemma neb_exists (A : Set Nat) :
∀ (n : Nat), ∃ (s : Nat), num_elts_below A n s := sorry

lemma bdd_subset_nat_match {A : Set Nat} {m s : Nat}
(h1 : ∀ n ∈ A, n < m) (h2 : num_elts_below A m s) :
matching (enum A) (I s) A := sorry

lemma bdd_subset_nat {A : Set Nat} {m s : Nat}
(h1 : ∀ n ∈ A, n < m) (h2 : num_elts_below A m s) :
I s ∼ A := Exists.intro (enum A) (bdd_subset_nat_match h1 h2)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

273

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

lemma unbdd_subset_nat_match {A : Set Nat}
(h1 : ∀ (m : Nat), ∃ n ∈ A, n ≥ m) :
matching (enum A) (Univ Nat) A := sorry

lemma unbdd_subset_nat {A : Set Nat}
(h1 : ∀ (m : Nat), ∃ n ∈ A, n ≥ m) :
denum A := Exists.intro (enum A) (unbdd_subset_nat_match h1)

lemma subset_nat_ctble (A : Set Nat) : ctble A := by
define --Goal : finite A ∨ denum A
by_cases h1 : ∃ (m : Nat), ∀ n ∈ A, n < m
· -- Case 1. h1 : ∃ (m : Nat), ∀ n ∈ A, n < m

apply Or.inl --Goal : finite A
obtain (m : Nat) (h2 : ∀ n ∈ A, n < m) from h1
obtain (s : Nat) (h3 : num_elts_below A m s) from neb_exists A m
apply Exists.intro s
show I s ∼ A from bdd_subset_nat h2 h3
done

· -- Case 2. h1 : ¬∃ (m : Nat), ∀ n ∈ A, n < m
apply Or.inr --Goal : denum A
push_neg at h1

--This tactic converts h1 to ∀ (m : Nat), ∃ n ∈ A, m ≤ n
show denum A from unbdd_subset_nat h1
done

done

As a consequence of our last lemma, we get another characterization of countable sets: a set
is countable if and only if it is equinumerous with some subset of the natural numbers:

lemma ctble_of_equinum_ctble {U V : Type} {A : Set U} {B : Set V}
(h1 : A ∼ B) (h2 : ctble A) : ctble B := sorry

lemma ctble_iff_equinum_set_nat {U : Type} (A : Set U) :
ctble A ↔ ∃ (I : Set Nat), I ∼ A := by

apply Iff.intro
· -- (→)

assume h1 : ctble A
define at h1 --h1 : finite A ∨ denum A
by_cases on h1
· -- Case 1. h1 : finite A

define at h1 --h1 : ∃ (n : Nat), I n ∼ A

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

274

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

obtain (n : Nat) (h2 : I n ∼ A) from h1
show ∃ (I : Set Nat), I ∼ A from Exists.intro (I n) h2
done

· -- Case 2. h1 : denum A
rewrite [denum_def] at h1 --h1 : Univ Nat ∼ A
show ∃ (I : Set Nat), I ∼ A from Exists.intro (Univ Nat) h1
done

done
· -- (←)

assume h1 : ∃ (I : Set Nat), I ∼ A
obtain (I : Set Nat) (h2 : I ∼ A) from h1
have h3 : ctble I := subset_nat_ctble I
show ctble A from ctble_of_equinum_ctble h2 h3
done

done

We are now ready to turn to Theorem 8.1.5 in HTPI. The theorem gives two statements that
are equivalent to the countability of a set 𝐴. The first involves a function from the natural
numbers to 𝐴 that is onto. In keeping with our approach in this section, we state a similar
characterization involving a relation rather than a function.

def unique_val_on_N {U : Type} (R : Rel Nat U) : Prop :=
∀ ⦃n : Nat⦄ ⦃x1 x2 : U⦄, R n x1 → R n x2 → x1 = x2

def nat_rel_onto {U : Type} (R : Rel Nat U) (A : Set U) : Prop :=
∀ ⦃x : U⦄, x ∈ A → ∃ (n : Nat), R n x

def fcnl_onto_from_nat {U : Type} (R : Rel Nat U) (A : Set U) : Prop :=
unique_val_on_N R ∧ nat_rel_onto R A

Intuitively, you might think of fcnl_onto_from_nat R A as meaning that the relation R defines
a function whose domain is a subset of the natural numbers and whose range contains A.

The second characterization of the countability of 𝐴 in Theorem 8.1.5 involves a function from
𝐴 to the natural numbers that is one-to-one. Once again, we rephrase this in terms of relations.
We define fcnl_one_one_to_nat R A to mean that R defines a function from A to the natural
numbers that is one-to-one:

def fcnl_one_one_to_nat {U : Type} (R : Rel U Nat) (A : Set U) : Prop :=
fcnl_on R A ∧ ∀ ⦃x1 x2 : U⦄ ⦃n : Nat⦄,

(x1 ∈ A ∧ R x1 n) → (x2 ∈ A ∧ R x2 n) → x1 = x2

Our plan is to prove that if A has type Set U then the following statements are equivalent:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

275

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

1. ctble A
2. ∃ (R : Rel Nat U), fcnl_onto_from_nat R A
3. ∃ (R : Rel U Nat), fcnl_one_one_to_nat R A

As in HTPI, we will do this by proving 1 → 2 → 3 → 1. Here is the proof of 1 → 2.

theorem Theorem_8_1_5_1_to_2 {U : Type} {A : Set U} (h1 : ctble A) :
∃ (R : Rel Nat U), fcnl_onto_from_nat R A := by

rewrite [ctble_iff_equinum_set_nat] at h1
obtain (I : Set Nat) (h2 : I ∼ A) from h1
obtain (R : Rel Nat U) (h3 : matching R I A) from h2
define at h3

--h3 : rel_within R I A ∧ fcnl_on R I ∧ fcnl_on (invRel R) A
apply Exists.intro R
define --Goal : unique_val_on_N R ∧ nat_rel_onto R A
apply And.intro
· -- Proof of unique_val_on_N R

define
fix n : Nat; fix x1 : U; fix x2 : U
assume h4 : R n x1
assume h5 : R n x2 --Goal : x1 = x2
have h6 : n ∈ I ∧ x1 ∈ A := h3.left h4
show x1 = x2 from fcnl_unique h3.right.left h6.left h4 h5
done

· -- Proof of nat_rel_onto R A
define
fix x : U
assume h4 : x ∈ A --Goal : ∃ (n : Nat), R n x
show ∃ (n : Nat), R n x from fcnl_exists h3.right.right h4
done

done

For the proof of 2 → 3, suppose we have A : Set U and S : Rel Nat U, and the statement
fcnl_onto_from_nat S A is true. We need to come up with a relation R : Rel U Nat for which
we can prove fcnl_one_one_to_nat R A. You might be tempted to try R = invRel S, but there
is a problem with this choice: if x ∈ A, there might be multiple natural numbers n such that S
n x holds, but we must make sure that there is only one n for which R x n holds. Our solution
to this problem will be to define R x n to mean that n is the smallest natural number for which
S n x holds. (The proof in HTPI uses a similar idea.) The well-ordering principle guarantees
that there always is such a smallest element.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

276

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

def least_rel_to {U : Type} (S : Rel Nat U) (x : U) (n : Nat) : Prop :=
S n x ∧ ∀ (m : Nat), S m x → n ≤ m

lemma exists_least_rel_to {U : Type} {S : Rel Nat U} {x : U}
(h1 : ∃ (n : Nat), S n x) : ∃ (n : Nat), least_rel_to S x n := by

set W : Set Nat := {n : Nat | S n x}
have h2 : ∃ (n : Nat), n ∈ W := h1
show ∃ (n : Nat), least_rel_to S x n from well_ord_princ W h2
done

theorem Theorem_8_1_5_2_to_3 {U : Type} {A : Set U}
(h1 : ∃ (R : Rel Nat U), fcnl_onto_from_nat R A) :
∃ (R : Rel U Nat), fcnl_one_one_to_nat R A := by

obtain (S : Rel Nat U) (h2 : fcnl_onto_from_nat S A) from h1
define at h2 --h2 : unique_val_on_N S ∧ nat_rel_onto S A
set R : Rel U Nat := least_rel_to S
apply Exists.intro R
define
apply And.intro
· -- Proof of fcnl_on R A

define
fix x : U
assume h4 : x ∈ A --Goal : ∃! (y : Nat), R x y
exists_unique
· -- Existence

have h5 : ∃ (n : Nat), S n x := h2.right h4
show ∃ (n : Nat), R x n from exists_least_rel_to h5
done

· -- Uniqueness
fix n1 : Nat; fix n2 : Nat
assume h5 : R x n1
assume h6 : R x n2 --Goal : n1 = n2
define at h5 --h5 : S n1 x ∧ ∀ (m : Nat), S m x → n1 ≤ m
define at h6 --h6 : S n2 x ∧ ∀ (m : Nat), S m x → n2 ≤ m
have h7 : n1 ≤ n2 := h5.right n2 h6.left
have h8 : n2 ≤ n1 := h6.right n1 h5.left
linarith
done

done
· -- Proof of one-to-one

fix x1 : U; fix x2 : U; fix n : Nat
assume h4 : x1 ∈ A ∧ R x1 n

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

277

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

assume h5 : x2 ∈ A ∧ R x2 n
have h6 : R x1 n := h4.right
have h7 : R x2 n := h5.right
define at h6 --h6 : S n x1 ∧ ∀ (m : Nat), S m x1 → n ≤ m
define at h7 --h7 : S n x2 ∧ ∀ (m : Nat), S m x2 → n ≤ m
show x1 = x2 from h2.left h6.left h7.left
done

done

Finally, for the proof of 3 → 1, suppose we have A : Set U, S : Rel U Nat, and
fcnl_one_one_to_nat S A holds. Our plan is to restrict S to elements of A and then show that
the inverse of the resulting relation is a matching from some set of natural numbers to A. By
ctble_iff_equinum_set_nat, this implies that A is countable.

def restrict_to {U V : Type} (S : Rel U V) (A : Set U)
(x : U) (y : V) : Prop := x ∈ A ∧ S x y

theorem Theorem_8_1_5_3_to_1 {U : Type} {A : Set U}
(h1 : ∃ (R : Rel U Nat), fcnl_one_one_to_nat R A) :
ctble A := by

obtain (S : Rel U Nat) (h2 : fcnl_one_one_to_nat S A) from h1
define at h2 --h2 : fcnl_on S A ∧ ∀ ⦃x1 x2 : U⦄ ⦃n : Nat⦄,

--x1 ∈ A ∧ S x1 n → x2 ∈ A ∧ S x2 n → x1 = x2
rewrite [ctble_iff_equinum_set_nat] --Goal : ∃ (I : Set Nat), I ∼ A
set R : Rel Nat U := invRel (restrict_to S A)
set I : Set Nat := {n : Nat | ∃ (x : U), R n x}
apply Exists.intro I
define --Goal : ∃ (R : Rel Nat U), matching R I A
apply Exists.intro R
define
apply And.intro
· -- Proof of rel_within R I A

define
fix n : Nat; fix x : U
assume h3 : R n x --Goal : n ∈ I ∧ x ∈ A
apply And.intro
· -- Proof that n ∈ I

define --Goal : ∃ (x : U), R n x
show ∃ (x : U), R n x from Exists.intro x h3
done

· -- Proof that x ∈ A
define at h3 --h3 : x ∈ A ∧ S x n

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

278

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

show x ∈ A from h3.left
done

done
· -- Proofs of fcnl_ons

apply And.intro
· -- Proof of fcnl_on R I

define
fix n : Nat
assume h3 : n ∈ I --Goal : ∃! (y : U), R n y
exists_unique
· -- Existence

define at h3 --h3 : ∃ (x : U), R n x
show ∃ (y : U), R n y from h3
done

· -- Uniqueness
fix x1 : U; fix x2 : U
assume h4 : R n x1
assume h5 : R n x2
define at h4 --h4 : x1 ∈ A ∧ S x1 n;
define at h5 --h5 : x2 ∈ A ∧ S x2 n
show x1 = x2 from h2.right h4 h5
done

done
· -- Proof of fcnl_on (invRel R) A

define
fix x : U
assume h3 : x ∈ A --Goal : ∃! (y : Nat), invRel R x y
exists_unique
· -- Existence

obtain (y : Nat) (h4 : S x y) from fcnl_exists h2.left h3
apply Exists.intro y
define
show x ∈ A ∧ S x y from And.intro h3 h4
done

· -- Uniqueness
fix n1 : Nat; fix n2 : Nat
assume h4 : invRel R x n1
assume h5 : invRel R x n2 --Goal : n1 = n2
define at h4 --h4 : x ∈ A ∧ S x n1
define at h5 --h5 : x ∈ A ∧ S x n2
show n1 = n2 from fcnl_unique h2.left h3 h4.right h5.right
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

279

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

done
done

done

We now know that statements 1–3 are equivalent, which means that statements 2 and 3 can
be thought of as alternative ways to think about countability:

theorem Theorem_8_1_5_2 {U : Type} (A : Set U) :
ctble A ↔ ∃ (R : Rel Nat U), fcnl_onto_from_nat R A := by

apply Iff.intro
· -- (→)

assume h1 : ctble A
show ∃ (R : Rel Nat U), fcnl_onto_from_nat R A from

Theorem_8_1_5_1_to_2 h1
done

· -- (←)
assume h1 : ∃ (R : Rel Nat U), fcnl_onto_from_nat R A
have h2 : ∃ (R : Rel U Nat), fcnl_one_one_to_nat R A :=

Theorem_8_1_5_2_to_3 h1
show ctble A from Theorem_8_1_5_3_to_1 h2
done

done

theorem Theorem_8_1_5_3 {U : Type} (A : Set U) :
ctble A ↔ ∃ (R : Rel U Nat), fcnl_one_one_to_nat R A := sorry

In the exercises, we ask you to show that countability of a set can be proven using functions
of the kind considered in Theorem 8.1.5 of HTPI.

We end this section with a proof of Theorem 8.1.6 in HTPI, which says that the set of rational
numbers is denumerable. Our strategy is to define a one-to-one function from Rat (the type of
rational numbers) to Nat. We will need to know a little bit about the way rational numbers are
represented in Lean. If q has type Rat, then q.num is the numerator of q, which is an integer,
and q.den is the denominator, which is a nonzero natural number. The theorem Rat.ext says
that if two rational numbers have the same numerator and denominator, then they are equal.
And we will also use the theorem Prod.mk.inj, which says that if two ordered pairs are equal,
then their first coordinates are equal, as are their second coordinates.

def fqn (q : Rat) : Nat := fnnn (fzn q.num, q.den)

lemma fqn_def (q : Rat) : fqn q = fnnn (fzn q.num, q.den) := by rfl

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

280

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

lemma fqn_one_one : one_to_one fqn := by
define
fix q1 : Rat; fix q2 : Rat
assume h1 : fqn q1 = fqn q2
rewrite [fqn_def, fqn_def] at h1

--h1 : fnnn (fzn q1.num, q1.den) = fnnn (fzn q2.num, q2.den)
have h2 : (fzn q1.num, q1.den) = (fzn q2.num, q2.den) :=

fnnn_one_one _ _ h1
have h3 : fzn q1.num = fzn q2.num ∧ q1.den = q2.den :=

Prod.mk.inj h2
have h4 : q1.num = q2.num := fzn_one_one _ _ h3.left
show q1 = q2 from Rat.ext h4 h3.right
done

lemma image_fqn_unbdd :
∀ (m : Nat), ∃ n ∈ image fqn (Univ Rat), n ≥ m := by

fix m : Nat
set n : Nat := fqn ↑m
apply Exists.intro n
apply And.intro
· -- Proof that n ∈ image fqn (Univ Rat)

define
apply Exists.intro ↑m
apply And.intro (elt_Univ (↑m : Rat))
rfl
done

· -- Proof that n ≥ m
show n ≥ m from

calc n
_ = tri (2 * m + 1) + 2 * m := by rfl
_ ≥ m := by linarith

done
done

theorem Theorem_8_1_6 : denum (Univ Rat) := by
set I : Set Nat := image fqn (Univ Rat)
have h1 : Univ Nat ∼ I := unbdd_subset_nat image_fqn_unbdd
have h2 : image fqn (Univ Rat) = I := by rfl
have h3 : Univ Rat ∼ I :=

equinum_image (one_one_on_of_one_one fqn_one_one (Univ Rat)) h2
have h4 : I ∼ Univ Rat := Theorem_8_1_3_2 h3

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

281

https://doi.org/10.1017/9781108539890

8.1. Equinumerous Sets

show denum (Univ Rat) from Theorem_8_1_3_3 h1 h4
done

Exercises

1. --Hint: Use Exercise_6_1_16a2 from the exercises of Section 6.1
lemma fnz_odd (k : Nat) : fnz (2 * k + 1) = -↑(k + 1) := sorry

2. lemma fnz_fzn : fnz ∘ fzn = id := sorry

3. lemma tri_step (k : Nat) : tri (k + 1) = tri k + k + 1 := sorry

4. lemma tri_incr {j k : Nat} (h1 : j ≤ k) : tri j ≤ tri k := sorry

5. lemma ctble_of_equinum_ctble {U V : Type} {A : Set U} {B : Set V}
(h1 : A ∼ B) (h2 : ctble A) : ctble B := sorry

6. theorem Exercise_8_1_1_b : denum {n : Int | even n} := sorry

The next four exercises use the following definition:

def Rel_image {U V : Type} (R : Rel U V) (A : Set U) : Set V :=
{y : V | ∃ x ∈ A, R x y}

Note that if R has type Rel U V, then Rel_image R has type Set U → Set V.

7. lemma Rel_image_on_power_set {U V : Type} {R : Rel U V}
{A C : Set U} {B : Set V} (h1 : matching R A B) (h2 : C ∈ P A) :
Rel_image R C ∈ P B := sorry

8. lemma Rel_image_inv {U V : Type} {R : Rel U V}
{A C : Set U} {B : Set V} (h1 : matching R A B) (h2 : C ∈ P A) :
Rel_image (invRel R) (Rel_image R C) = C := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

282

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

9. lemma Rel_image_one_one_on {U V : Type} {R : Rel U V}
{A : Set U} {B : Set V} (h1 : matching R A B) :
one_one_on (Rel_image R) (P A) := sorry

10. lemma Rel_image_image {U V : Type} {R : Rel U V}
{A : Set U} {B : Set V} (h1 : matching R A B) :
image (Rel_image R) (P A) = P B := sorry

11. --Hint: Use the previous two exercises.
theorem Exercise_8_1_5 {U V : Type} {A : Set U} {B : Set V}

(h1 : A ∼ B) : P A ∼ P B := sorry

12. theorem Exercise_8_1_17 {U : Type} {A B : Set U}
(h1 : B ⊆ A) (h2 : ctble A) : ctble B := sorry

13. theorem ctble_of_onto_func_from_N {U : Type} {A : Set U} {f : Nat → U}
(h1 : ∀ x ∈ A, ∃ (n : Nat), f n = x) : ctble A := sorry

14. theorem ctble_of_one_one_func_to_N {U : Type} {A : Set U} {f : U → Nat}
(h1 : one_one_on f A) : ctble A := sorry

8.1½. Debts Paid

It is time to fulfill promises we made in two earlier chapters.

In Section 6.2, we promised to define a proposition numElts A n to express the idea that the
set A has n elements. It should now be clear how to define this proposition:

def numElts {U : Type} (A : Set U) (n : Nat) : Prop := I n ∼ A

lemma numElts_def {U : Type} (A : Set U) (n : Nat) :
numElts A n ↔ I n ∼ A := by rfl

It is sometimes convenient to phrase the definition of finite in terms of numElts, so we state
that version of the definition as a lemma.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

283

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

lemma finite_def {U : Type} (A : Set U) :
finite A ↔ ∃ (n : Nat), numElts A n := by rfl

We also owe you the proofs of several theorems about numElts. We begin with the fact that
a set has zero elements if and only if it is empty. To prove this, we will need to produce a
relation that is a matching between two sets if the sets are empty. The natural choice for this
relation is what we will call the empty relation—the relation that is always false.

def emptyRel (U V : Type) (x : U) (y : V) : Prop := False

lemma fcnl_on_empty {U V : Type}
(R : Rel U V) {A : Set U} (h1 : empty A) : fcnl_on R A := by

define
fix a : U
assume h2 : a ∈ A --Goal : ∃! (y : V), R a y
contradict h1 with h3 --Goal : ∃ (x : U), x ∈ A
show ∃ (x : U), x ∈ A from Exists.intro a h2
done

lemma empty_match {U V : Type} {A : Set U} {B : Set V}
(h1 : empty A) (h2 : empty B) : matching (emptyRel U V) A B := by

define
apply And.intro
· -- Proof of rel_within

define
fix a : U; fix b : V
assume h3 : emptyRel U V a b --Goal : a ∈ A ∧ b ∈ B
by_contra h4 --Goal : False
define at h3
show False from h3
done

· -- Proof of fcnl_ons
apply And.intro
· -- Proof of fcnl_on emptyRel

show fcnl_on (emptyRel U V) A from fcnl_on_empty (emptyRel U V) h1
done

· -- Proof of fcnl_on (invRel emptyRel)
show fcnl_on (invRel (emptyRel U V)) B from

fcnl_on_empty (invRel (emptyRel U V)) h2
done

done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

284

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

lemma I_0_empty : empty (I 0) := by
define
by_contra h1 --h1 : ∃ (x : Nat), x ∈ I 0
obtain (x : Nat) (h2 : x ∈ I 0) from h1
define at h2 --h2 : x < 0
linarith
done

theorem zero_elts_iff_empty {U : Type} (A : Set U) :
numElts A 0 ↔ empty A := by

apply Iff.intro
· -- (→)

assume h1 : numElts A 0
define
by_contra h2 --h2 : ∃ (x : U), x ∈ A
obtain (x : U) (h3 : x ∈ A) from h2
define at h1
obtain (R : Rel Nat U) (h4 : matching R (I 0) A) from h1
define at h4

--h4 : rel_within R (I 0) A ∧ fcnl_on R (I 0) ∧ fcnl_on (invRel R) A
obtain (j : Nat) (h5 : invRel R x j) from

fcnl_exists h4.right.right h3
define at h5 --h5 : R j x
have h6 : j ∈ I 0 ∧ x ∈ A := h4.left h5
contradict I_0_empty --Goal : ∃ (x : Nat), x ∈ I 0
show ∃ (x : Nat), x ∈ I 0 from Exists.intro j h6.left
done

· -- (←)
assume h1 : empty A
show ∃ (R : Rel Nat U), matching R (I 0) A from

Exists.intro (emptyRel Nat U) (empty_match I_0_empty h1)
done

done

Next, we prove that if a set has a positive number of elements then it is not empty. The proof
is straightforward.

theorem nonempty_of_pos_numElts {U : Type} {A : Set U} {n : Nat}
(h1 : numElts A n) (h2 : n > 0) : ∃ (x : U), x ∈ A := by

define at h1
obtain (R : Rel Nat U) (h3 : matching R (I n) A) from h1
define at h3

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

285

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

have h4 : 0 ∈ I n := h2
obtain (x : U) (h5 : R 0 x) from fcnl_exists h3.right.left h4
have h6 : 0 ∈ I n ∧ x ∈ A := h3.left h5
show ∃ (x : U), x ∈ A from Exists.intro x h6.right
done

To prove our next theorem about numElts, we will need to prove that two relations are equal.
How can we do that? To prove that two sets are equal, we usually start by applying Set.ext,
and to prove that two functions are equal we apply funext. We’ll need a similar extensionality
principle for relations. If R and S are relations from U to V, the principle will say that if we
have h : ∀ (u : U) (v : V), R u v ↔ S u v, then we can conclude that R = S. To prove it,
we’ll use h to prove extension R = extension S, and then go on to deduce R = S.

theorem relext {U V : Type} {R S : Rel U V}
(h : ∀ (u : U) (v : V), R u v ↔ S u v) : R = S := by

have h2 : extension R = extension S := by
apply Set.ext
fix (u, v) : U × V --Goal : (u, v) ∈ extension R ↔ (u, v) ∈ extension S
rewrite [ext_def, ext_def] --Goal : R u v ↔ S u v
show R u v ↔ S u v from h u v
done

show R = S from
calc R

_ = RelFromExt (extension R) := by rfl
_ = RelFromExt (extension S) := by rw [h2]
_ = S := by rfl

done

Now we are ready to prove that if A has n + 1 elements and we remove one element, then the
resulting set has n elements. The key lemma for this proof says that if A ∼ B, u ∈ A, and v ∈ B,
then A \ {u} ∼ B \ {v}. To see how to prove this lemma, suppose that R is a matching from
A to B. We must find a way to modify R to get a matching from A \ {u} to B \ {v}. If we’re
lucky, R u v will be true, in which case if we simply eliminate the pairing of u with v from R,
the resulting relation will be a matching from A \ {u} to B \ {v}. But it may happen that
R u v is not true. In that case, there must be some x ∈ A \ {u} and some y ∈ B \ {v} such
that R x v and R u y. When we remove u from A and v from B, x and y will be left unpaired.
The obvious solution is to pair them with each other! This motivates the definition of a new
relation remove_one R u v:

def remove_one {U V : Type} (R : Rel U V) (u : U) (v : V)
(x : U) (y : V) : Prop := x ≠ u ∧ y ≠ v ∧ (R x y ∨ (R x v ∧ R u y))

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

286

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

lemma remove_one_def {U V : Type} (R : Rel U V) (u x : U) (v y : V) :
remove_one R u v x y ↔

x ≠ u ∧ y ≠ v ∧ (R x y ∨ (R x v ∧ R u y)) := by rfl

Our strategy now is to prove that remove_one R u v is a matching from A \ {u} to B \ {v}.
The proof is long but not hard, so we skip some of the details.

lemma remove_one_rel_within {U V : Type}
{R : Rel U V} {A : Set U} {B : Set V} {x u : U} {y v : V}
(h1 : matching R A B) (h2 : remove_one R u v x y) :
x ∈ A \ {u} ∧ y ∈ B \ {v} := sorry

lemma remove_one_inv {U V : Type} (R : Rel U V) (u : U) (v : V) :
invRel (remove_one R u v) = remove_one (invRel R) v u := by

apply relext
fix y : V; fix x : U

--Goal : invRel (remove_one R u v) y x ↔ remove_one (invRel R) v u y x
rewrite [invRel_def, remove_one_def, remove_one_def]
rewrite [invRel_def, invRel_def, invRel_def]
rewrite [←and_assoc, ←and_assoc]

--Goal : (x ≠ u ∧ y ≠ v) ∧ (R x y ∨ R x v ∧ R u y) ↔
-- (y ≠ v ∧ x ≠ u) ∧ (R x y ∨ R u y ∧ R x v)

have h1 : x ≠ u ∧ y ≠ v ↔ y ≠ v ∧ x ≠ u := and_comm
have h2 : R x v ∧ R u y ↔ R u y ∧ R x v := and_comm
rewrite [h1, h2]
rfl
done

lemma remove_one_iff {U V : Type}
{A : Set U} {B : Set V} {R : Rel U V} (h1 : matching R A B)
{u : U} (h2 : u ∈ A) (v : V) {x : U} (h3 : x ∈ A \ {u}) :
∃ w ∈ A, ∀ (y : V), remove_one R u v x y ↔ R w y := sorry

theorem remove_one_fcnl {U V : Type}
{R : Rel U V} {A : Set U} {B : Set V} {u : U}
(h1 : matching R A B) (h2 : u ∈ A) (v : V) :
fcnl_on (remove_one R u v) (A \ {u}) := by

define
fix x : U
assume h3 : x ∈ A \ {u} --Goal : ∃! (y : V), remove_one R u v x y
obtain (w : U) (h4 : w ∈ A ∧ ∀ (y : V),

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

287

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

remove_one R u v x y ↔ R w y) from remove_one_iff h1 h2 v h3
define at h1
exists_unique
· -- Existence

obtain (y : V) (h5 : R w y) from fcnl_exists h1.right.left h4.left
apply Exists.intro y
rewrite [h4.right]
show R w y from h5
done

· -- Uniqueness
fix y1 : V; fix y2 : V
rewrite [h4.right, h4.right]
assume h5 : R w y1
assume h6 : R w y2
show y1 = y2 from fcnl_unique h1.right.left h4.left h5 h6
done

done

theorem remove_one_match {U V : Type}
{R : Rel U V} {A : Set U} {B : Set V} {u : U} {v : V}
(h1 : matching R A B) (h2 : u ∈ A) (h3 : v ∈ B) :
matching (remove_one R u v) (A \ {u}) (B \ {v}) := by

define
apply And.intro
· -- Proof of rel_within

define
fix x : U; fix y : V
assume h4 : remove_one R u v x y
show x ∈ A \ {u} ∧ y ∈ B \ {v} from remove_one_rel_within h1 h4
done

· -- Proof of fcnl_ons
apply And.intro (remove_one_fcnl h1 h2 v)
rewrite [remove_one_inv]
show fcnl_on (remove_one (invRel R) v u) (B \ {v}) from

remove_one_fcnl (inv_match h1) h3 u
done

theorem remove_one_equinum {U V : Type}
{A : Set U} {B : Set V} {u : U} {v : V}
(h1 : A ∼ B) (h2 : u ∈ A) (h3 : v ∈ B) : A \ {u} ∼ B \ {v} := by

define

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

288

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

obtain (R : Rel U V) (h4 : matching R A B) from h1
apply Exists.intro (remove_one R u v)
show matching (remove_one R u v) (A \ {u}) (B \ {v}) from

remove_one_match h4 h2 h3
done

lemma I_max (n : Nat) : n ∈ I (n + 1) := sorry

lemma I_diff (n : Nat) : I (n + 1) \ {n} = I n := sorry

theorem remove_one_numElts {U : Type} {A : Set U} {n : Nat} {a : U}
(h1 : numElts A (n + 1)) (h2 : a ∈ A) : numElts (A \ {a}) n := by

have h3 : n ∈ I (n + 1) := I_max n
rewrite [numElts_def] at h1 --h1 : I (n + 1) ∼ X
have h4 : I (n + 1) \ {n} ∼ A \ {a} := remove_one_equinum h1 h3 h2
rewrite [I_diff] at h4 --h4 : I n ∼ A \ {a}
show numElts (A \ {a}) n from h4
done

Finally, we prove that a set has one element if and only if it is a singleton set. For this proof, we
need to be able to produce a relation that is a matching between two singleton sets. Suppose
we have a : U and b : V. Of course, a matching from {a} to {b} must pair a with b, so we
make the following definition:

def one_match {U V : Type} (a : U) (b : V)
(x : U) (y : V) : Prop := x = a ∧ y = b

lemma one_match_def {U V : Type} (a x : U) (b y : V) :
one_match a b x y ↔ x = a ∧ y = b := by rfl

We prove the theorem using a few lemmas, whose proofs we leave to you.

lemma one_match_match {U V : Type} (a : U) (b : V) :
matching (one_match a b) {a} {b} := sorry

lemma I_1_singleton : I 1 = {0} := sorry

lemma singleton_of_diff_empty {U : Type} {A : Set U} {a : U}
(h1 : a ∈ A) (h2 : empty (A \ {a})) : A = {a} := sorry

lemma singleton_one_elt {U : Type} (u : U) : numElts {u} 1 := by
define

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

289

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

rewrite [I_1_singleton]
show ∃ (R : Rel Nat U), matching R {0} {u} from

Exists.intro (one_match 0 u) (one_match_match 0 u)
done

theorem one_elt_iff_singleton {U : Type} (A : Set U) :
numElts A 1 ↔ ∃ (x : U), A = {x} := by

apply Iff.intro
· -- (→)

assume h1 : numElts A 1 --Goal : ∃ (x : U), A = {x}
have h2 : 1 > 0 := by decide
obtain (x : U) (h3 : x ∈ A) from nonempty_of_pos_numElts h1 h2
have h4 : numElts (A \ {x}) 0 := remove_one_numElts h1 h3
rewrite [zero_elts_iff_empty] at h4
show ∃ (x : U), A = {x} from

Exists.intro x (singleton_of_diff_empty h3 h4)
done

· -- (←)
assume h1 : ∃ (x : U), A = {x}
obtain (x : U) (h2 : A = {x}) from h1
rewrite [h2]
show numElts {x} 1 from singleton_one_elt x
done

done

We have now proven all of the theorems about numElts whose proofs were promised in Section
6.2. However, there is still one important issue that we have not addressed. Could there be a
set A such that, say, numElts A 5 and numElts A 6 are both true? Surely the answer is no—a
set can’t have five elements and also have six elements! But it requires proof.

lemma eq_zero_of_I_zero_equinum {n : Nat} (h1 : I 0 ∼ I n) : n = 0 := by
rewrite [←numElts_def, zero_elts_iff_empty] at h1

--h1 : empty (I n)
contradict h1 with h2 --Goal : ∃ (x : Nat), x ∈ I n
apply Exists.intro 0
define
show 0 < n from Nat.pos_of_ne_zero h2
done

theorem eq_of_I_equinum : ∀ ⦃m n : Nat⦄, I m ∼ I n → m = n := by
by_induc
· -- Base Case

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

290

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

fix n : Nat
assume h1 : I 0 ∼ I n
show 0 = n from (eq_zero_of_I_zero_equinum h1).symm
done

· -- Induction Step
fix m : Nat
assume ih : ∀ ⦃n : Nat⦄, I m ∼ I n → m = n
fix n : Nat
assume h1 : I (m + 1) ∼ I n --Goal : m + 1 = n
have h2 : n ≠ 0 := by

by_contra h2
have h3 : I n ∼ I (m + 1) := Theorem_8_1_3_2 h1
rewrite [h2] at h3
have h4 : m + 1 = 0 := eq_zero_of_I_zero_equinum h3
linarith
done

obtain (k : Nat) (h3 : n = k + 1) from exists_eq_add_one_of_ne_zero h2
rewrite [h3] at h1 --h1 : I (m + 1) ∼ I (k + 1)
rewrite [h3] --Goal : m + 1 = k + 1
have h4 : m ∈ I (m + 1) := I_max m
have h5 : k ∈ I (k + 1) := I_max k
have h6 : I (m + 1) \ {m} ∼ I (k + 1) \ {k} :=

remove_one_equinum h1 h4 h5
rewrite [I_diff, I_diff] at h6 --h6 : I m ∼ I k
have h7 : m = k := ih h6
rewrite [h7]
rfl
done

done

theorem numElts_unique {U : Type} {A : Set U} {m n : Nat}
(h1 : numElts A m) (h2 : numElts A n) : m = n := by

rewrite [numElts_def] at h1 --h1 : I m ∼ A
rewrite [numElts_def] at h2 --h2 : I n ∼ A
have h3 : A ∼ I n := Theorem_8_1_3_2 h2
have h4 : I m ∼ I n := Theorem_8_1_3_3 h1 h3
show m = n from eq_of_I_equinum h4
done

Next, we turn to our promise, at the end of Section 7.4, to prove Theorem 7.4.4 of HTPI,
which says that the totient function 𝜑 is multiplicative.

To define the totient function in Lean, in Chapter 7 we defined phi m to be num_rp_below m m,

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

291

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

where num_rp_below m k is the number of natural numbers less than k that are relatively prime
to m. But in this chapter we have developed new methods for counting things. Our first task
is to show that these new methods agree with the method used in Chapter 7.

We have already remarked that the definition of num_elts_below in this chapter bears some re-
semblance to the definition of num_rp_below in Chapter 7. It should not be surprising, therefore,
that these two counting methods give results that agree.

def Set_rp_below (m : Nat) : Set Nat := {n : Nat | rel_prime m n ∧ n < m}

lemma Set_rp_below_def (a m : Nat) :
a ∈ Set_rp_below m ↔ rel_prime m a ∧ a < m := by rfl

lemma neb_nrpb (m : Nat) : ∀ ⦃k : Nat⦄, k ≤ m →
num_elts_below (Set_rp_below m) k (num_rp_below m k) := sorry

lemma neb_phi (m : Nat) :
num_elts_below (Set_rp_below m) m (phi m) := by

rewrite [phi_def]
have h1 : m ≤ m := by linarith
show num_elts_below (Set_rp_below m) m (num_rp_below m m) from

neb_nrpb m h1
done

lemma phi_is_numElts (m : Nat) :
numElts (Set_rp_below m) (phi m) := by

rewrite [numElts_def] --Goal : I (phi m) ∼ Set_rp_below m
have h1 : ∀ n ∈ Set_rp_below m, n < m := by

fix n : Nat
assume h2 : n ∈ Set_rp_below m
define at h2
show n < m from h2.right
done

have h2 : num_elts_below (Set_rp_below m) m (phi m) := neb_phi m
show I (phi m) ∼ Set_rp_below m from bdd_subset_nat h1 h2
done

According to the last lemma, we can now think of phi m as the number of elements of the set
Set_rp_below m.

We will need one more number-theoretic fact: Lemma 7.4.7 from HTPI. We follow the strategy
of the proof in HTPI, separating out one calculation as an auxiliary lemma before giving the
main proof.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

292

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

lemma Lemma_7_4_7_aux {m n : Nat} {s t : Int}
(h : s * m + t * n = 1) (a b : Nat) :
t * n * a + s * m * b ≡ a (MOD m) := by

define
apply Exists.intro (s * (b - a))
show t * n * a + s * m * b - a = m * (s * (b - a)) from

calc t * n * a + s * m * b - a
_ = (t * n - 1) * a + s * m * b := by ring
_ = (t * n - (s * m + t * n)) * a + s * m * b := by rw [h]
_ = m * (s * (b - a)) := by ring

done

lemma Lemma_7_4_7 {m n : Nat} [NeZero m] [NeZero n]
(h1 : rel_prime m n) (a b : Nat) :
∃ (r : Nat), r < m * n ∧ r ≡ a (MOD m) ∧ r ≡ b (MOD n) := by

set s : Int := gcd_c1 m n
set t : Int := gcd_c2 m n
have h4 : s * m + t * n = gcd m n := gcd_lin_comb n m
define at h1 --h1 : gcd m n = 1
rewrite [h1, Nat.cast_one] at h4 --h4 : s * m + t * n = 1
set x : Int := t * n * a + s * m * b
have h5 : x ≡ a (MOD m) := Lemma_7_4_7_aux h4 a b
rewrite [add_comm] at h4 --h4 : t * n + s * m = 1
have h6 : s * m * b + t * n * a ≡ b (MOD n) :=

Lemma_7_4_7_aux h4 b a
have h7 : s * m * b + t * n * a = x := by ring
rewrite [h7] at h6 --h6 : x ≡ b (MOD n)
have h8 : m * n ≠ 0 := mul_ne_zero (NeZero.ne m) (NeZero.ne n)
rewrite [←neZero_iff] at h8 --h8 : NeZero (m * n)
have h9 : 0 ≤ x % ↑(m * n) ∧ x % ↑(m * n) < ↑(m * n) ∧

x ≡ x % ↑(m * n) (MOD m * n) := mod_cmpl_res (m * n) x
have h10 : x % ↑(m * n) < ↑(m * n) ∧

x ≡ x % ↑(m * n) (MOD m * n) := h9.right
set r : Nat := Int.toNat (x % ↑(m * n))
have h11 : x % ↑(m * n) = ↑r := (Int.toNat_of_nonneg h9.left).symm
rewrite [h11, Nat.cast_lt] at h10 --h10 : r < m * n ∧ x ≡ r (MOD m * n)
apply Exists.intro r
apply And.intro h10.left
have h12 : r ≡ x (MOD (m * n)) := congr_symm h10.right
rewrite [Lemma_7_4_5 _ _ h1] at h12 --h12 : r ≡ x (MOD m) ∧ r ≡ x (MOD n)
apply And.intro

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

293

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

· -- Proof that r ≡ a (MOD m)
show r ≡ a (MOD m) from congr_trans h12.left h5
done

· -- Proof that r ≡ b (MOD n)
show r ≡ b (MOD n) from congr_trans h12.right h6
done

done

The next fact we need is part 1 of Theorem 8.1.2 in HTPI, which says that if 𝐴, 𝐵, 𝐶, and 𝐷
are sets such that 𝐴 ∼ 𝐵 and 𝐶 ∼ 𝐷, then 𝐴 × 𝐶 ∼ 𝐵 × 𝐷. We would like to prove this in
Lean, but how do we state the theorem? In Lean, Cartesian product is an operation on types,
not sets. However, we can define a Cartesian product operation on sets:

def Set_prod {U V : Type} (A : Set U) (B : Set V) : Set (U × V) :=
{(a, b) : U × V | a ∈ A ∧ b ∈ B}

notation:75 A:75 " ×ₛ " B:75 => Set_prod A B

lemma Set_prod_def {U V : Type} (A : Set U) (B : Set V) (a : U) (b : V) :
(a, b) ∈ A ×ₛ B ↔ a ∈ A ∧ b ∈ B := by rfl

To type the subscript s after ×, type _s. Thus, to type ×ₛ, you can type \times_s or \x_s.
Notice that in the notation command that introduces the symbol ×ₛ, we have used the number
75 in positions where we used 50 when defining the notation ∼. Without going into detail
about exactly what the three occurrences of 50 and 75 mean, we will just say that this tells
Lean that ×ₛ is to be given higher precedence than ∼, and as a result an expression like A ∼ B
×ₛ C will be interpreted as A ∼ (B ×ₛ C) rather than (A ∼ B) ×ₛ C.

We can now state the theorem corresponding to the first part of Theorem 8.1.2 in HTPI.

theorem Theorem_8_1_2_1
{U V W X : Type} {A : Set U} {B : Set V} {C : Set W} {D : Set X}
(h1 : A ∼ B) (h2 : C ∼ D) : A ×ₛ C ∼ B ×ₛ D

To see how to prove this theorem, suppose that R is a matching from A to B and S is a matching
from C to D. We must produce a matching from A ×ₛ C to B ×ₛ D. The following definition is
motivated by the proof in HTPI :

def Rel_prod {U V W X : Type} (R : Rel U V) (S : Rel W X)
(p : U × W) (q : V × X) : Prop := R p.1 q.1 ∧ S p.2 q.2

notation:75 R:75 " ×ᵣ " S:75 => Rel_prod R S

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

294

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

lemma Rel_prod_def {U V W X : Type} (R : Rel U V) (S : Rel W X)
(u : U) (v : V) (w : W) (x : X) :
(R ×ᵣ S) (u, w) (v, x) ↔ R u v ∧ S w x := by rfl

With this definition, R ×ᵣ S is a relation from U × W to V × X. (Of course, to type the subscript
r after ×, you should type _r.) We leave the proof that R ×ᵣ S is a matching from A ×ₛ C to
B ×ₛ D as an exercise for you.

lemma prod_match {U V W X : Type}
{A : Set U} {B : Set V} {C : Set W} {D : Set X}
{R : Rel U V} {S : Rel W X}
(h1 : matching R A B) (h2 : matching S C D) :
matching (R ×ᵣ S) (A ×ₛ C) (B ×ₛ D) := sorry

theorem Theorem_8_1_2_1
{U V W X : Type} {A : Set U} {B : Set V} {C : Set W} {D : Set X}
(h1 : A ∼ B) (h2 : C ∼ D) : A ×ₛ C ∼ B ×ₛ D := by

obtain (R : Rel U V) (h3 : matching R A B) from h1
obtain (S : Rel W X) (h4 : matching S C D) from h2
apply Exists.intro (R ×ᵣ S)
show matching (R ×ᵣ S) (A ×ₛ C) (B ×ₛ D) from prod_match h3 h4
done

As explained in Section 7.4 of HTPI, a key fact used in the proof of Theorem 7.4.4 is that if 𝐴
is a set with 𝑚 elements and 𝐵 is a set with 𝑛 elements, then 𝐴 × 𝐵 has 𝑚𝑛 elements. Section
7.4 of HTPI gives an intuitive explanation of this fact, but we’ll need to prove it in Lean. In
other words, we need to prove the following theorem:

theorem numElts_prod {U V : Type} {A : Set U} {B : Set V} {m n : Nat}
(h1 : numElts A m) (h2 : numElts B n) : numElts (A ×ₛ B) (m * n)

Here’s our plan for this proof: The hypotheses numElts A m and numElts B n mean I m ∼ A and
I n ∼ B. Applying Theorem_8_1_2_1 to these hypotheses, we can infer I m ×ₛ I n ∼ A ×ₛ B. If
we can prove that I (m * n) ∼ I m ×ₛ I n, then we’ll be able to conclude I (m * n) ∼ A ×ₛ
B, or in other words numElts (A ×ₛ B) (m * n), as required. Thus, the key to the proof is to
show that I (m * n) ∼ I m ×ₛ I n.

To prove this, we’ll define a function from Nat to Nat × Nat that maps I (m * n) to I m ×ₛ I
n. The function we will use maps a natural number a to the quotient and remainder when a
is divided by n.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

295

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

def qr (n a : Nat) : Nat × Nat := (a / n, a % n)

lemma qr_def (n a : Nat) : qr n a = (a / n, a % n) := by rfl

lemma qr_one_one (n : Nat) : one_to_one (qr n) := by
define
fix a1 : Nat; fix a2 : Nat
assume h1 : qr n a1 = qr n a2 --Goal : a1 = a2
rewrite [qr_def, qr_def] at h1
have h2 : a1 / n = a2 / n ∧ a1 % n = a2 % n := Prod.mk.inj h1
show a1 = a2 from

calc a1
_ = n * (a1 / n) + a1 % n := (Nat.div_add_mod a1 n).symm
_ = n * (a2 / n) + a2 % n := by rw [h2.left, h2.right]
_ = a2 := Nat.div_add_mod a2 n

done

lemma qr_image (m n : Nat) : image (qr n) (I (m * n)) = I m ×ₛ I n := sorry

lemma I_prod (m n : Nat) : I (m * n) ∼ I m ×ₛ I n := equinum_image
(one_one_on_of_one_one (qr_one_one n) (I (m * n))) (qr_image m n)

theorem numElts_prod {U V : Type} {A : Set U} {B : Set V} {m n : Nat}
(h1 : numElts A m) (h2 : numElts B n) : numElts (A ×ₛ B) (m * n) := by

rewrite [numElts_def] at h1 --h1 : I m ∼ A
rewrite [numElts_def] at h2 --h2 : I n ∼ B
rewrite [numElts_def] --Goal : I (m * n) ∼ A ×ₛ B
have h3 : I m ×ₛ I n ∼ A ×ₛ B := Theorem_8_1_2_1 h1 h2
have h4 : I (m * n) ∼ I m ×ₛ I n := I_prod m n
show I (m * n) ∼ A ×ₛ B from Theorem_8_1_3_3 h4 h3
done

Our strategy for proving Theorem 7.4.4 will be to show that if m and n are relatively prime,
then Set_rp_below (m * n) ∼ Set_rp_below m ×ₛ Set_rp_below n. Once again, we use a function
from Nat to Nat × Nat to show that these sets are equinumerous. This time, the function will
map a to (a % m, a % n).

def mod_mod (m n a : Nat) : Nat × Nat := (a % m, a % n)

lemma mod_mod_def (m n a : Nat) : mod_mod m n a = (a % m, a % n) := by rfl

Our proof will make use of several theorems from the exercises of Sections 7.3 and 7.4:

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

296

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

theorem congr_rel_prime {m a b : Nat} (h1 : a ≡ b (MOD m)) :
rel_prime m a ↔ rel_prime m b := sorry

theorem rel_prime_mod (m a : Nat) :
rel_prime m (a % m) ↔ rel_prime m a := sorry

theorem congr_iff_mod_eq_Nat (m a b : Nat) [NeZero m] :
↑a ≡ ↑b (MOD m) ↔ a % m = b % m := sorry

lemma Lemma_7_4_6 {a b c : Nat} :
rel_prime (a * b) c ↔ rel_prime a c ∧ rel_prime b c := sorry

Combining these with other theorems from Chapter 7, we can now use mod_mod m n to show
that Set_rp_below (m * n) ∼ Set_rp_below m ×ₛ Set_rp_below n.

lemma left_NeZero_of_mul {m n : Nat} (h : m * n ≠ 0) : NeZero m :=
neZero_iff.rtl (left_ne_zero_of_mul h)

lemma right_NeZero_of_mul {m n : Nat} (h : m * n ≠ 0) : NeZero n :=
neZero_iff.rtl (right_ne_zero_of_mul h)

lemma mod_mod_one_one_on {m n : Nat} (h1 : rel_prime m n) :
one_one_on (mod_mod m n) (Set_rp_below (m * n)) := by

define
fix a1 : Nat; fix a2 : Nat
assume h2 : a1 ∈ Set_rp_below (m * n)
assume h3 : a2 ∈ Set_rp_below (m * n)
assume h4 : mod_mod m n a1 = mod_mod m n a2 --Goal : a1 = a2
define at h2; define at h3
rewrite [mod_mod_def, mod_mod_def] at h4
have h5 : a1 % m = a2 % m ∧ a1 % n = a2 % n := Prod.mk.inj h4
have h6 : m * n ≠ 0 := by linarith
have h7 : NeZero m := left_NeZero_of_mul h6
have h8 : NeZero n := right_NeZero_of_mul h6
rewrite [←congr_iff_mod_eq_Nat, ←congr_iff_mod_eq_Nat] at h5

--h5 : ↑a1 ≡ ↑a2 (MOD m) ∧ ↑a1 ≡ ↑a2 (MOD n)
rewrite [←Lemma_7_4_5 _ _ h1] at h5 --h5 : ↑a1 ≡ ↑a2 (MOD m * n)
rewrite [congr_iff_mod_eq_Nat] at h5 --h5 : a1 % (m * n) = a2 % (m * n)
rewrite [Nat.mod_eq_of_lt h2.right, Nat.mod_eq_of_lt h3.right] at h5
show a1 = a2 from h5
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

297

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

lemma mod_elt_Set_rp_below {a m : Nat} [NeZero m] (h1 : rel_prime m a) :
a % m ∈ Set_rp_below m := by

define --Goal : rel_prime m (a % m) ∧ a % m < m
rewrite [rel_prime_mod] --Goal : rel_prime m a ∧ a % m < m
show rel_prime m a ∧ a % m < m from

And.intro h1 (mod_nonzero_lt a (NeZero.ne m))
done

lemma mod_mod_image {m n : Nat} (h1 : rel_prime m n) :
image (mod_mod m n) (Set_rp_below (m * n)) =

(Set_rp_below m) ×ₛ (Set_rp_below n) := by
apply Set.ext
fix (b, c) : Nat × Nat
apply Iff.intro
· -- (→)

assume h2 : (b, c) ∈ image (mod_mod m n) (Set_rp_below (m * n))
define at h2
obtain (a : Nat)

(h3 : a ∈ Set_rp_below (m * n) ∧ mod_mod m n a = (b, c)) from h2
rewrite [Set_rp_below_def, mod_mod_def] at h3
have h4 : rel_prime (m * n) a := h3.left.left
rewrite [Lemma_7_4_6] at h4 --h4 : rel_prime m a ∧ rel_prime n a
have h5 : a % m = b ∧ a % n = c := Prod.mk.inj h3.right
define
rewrite [←h5.left, ←h5.right]

--Goal : a % m ∈ Set_rp_below m ∧ a % n ∈ Set_rp_below n
have h6 : m * n ≠ 0 := by linarith
have h7 : NeZero m := left_NeZero_of_mul h6
have h8 : NeZero n := right_NeZero_of_mul h6
apply And.intro
· -- Proof that a % m ∈ Set_rp_below m

show a % m ∈ Set_rp_below m from mod_elt_Set_rp_below h4.left
done

· -- Proof that a % n ∈ Set_rp_below n
show a % n ∈ Set_rp_below n from mod_elt_Set_rp_below h4.right
done

done
· -- (←)

assume h2 : (b, c) ∈ Set_rp_below m ×ₛ Set_rp_below n
rewrite [Set_prod_def, Set_rp_below_def, Set_rp_below_def] at h2

--h2 : (rel_prime m b ∧ b < m) ∧ (rel_prime n c ∧ c < n)
define

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

298

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

have h3 : m ≠ 0 := by linarith
have h4 : n ≠ 0 := by linarith
rewrite [←neZero_iff] at h3
rewrite [←neZero_iff] at h4
obtain (a : Nat) (h5 : a < m * n ∧ a ≡ b (MOD m) ∧ a ≡ c (MOD n))

from Lemma_7_4_7 h1 b c
apply Exists.intro a
apply And.intro
· -- Proof of a ∈ Set_rp_below (m * n)

define --Goal : rel_prime (m * n) a ∧ a < m * n
apply And.intro _ h5.left
rewrite [Lemma_7_4_6] --Goal : rel_prime m a ∧ rel_prime n a
rewrite [congr_rel_prime h5.right.left,

congr_rel_prime h5.right.right]
show rel_prime m b ∧ rel_prime n c from

And.intro h2.left.left h2.right.left
done

· -- Proof of mod_mod m n a = (b, c)
rewrite [congr_iff_mod_eq_Nat, congr_iff_mod_eq_Nat] at h5
rewrite [mod_mod_def, h5.right.left, h5.right.right]

--Goal : (b % m, c % n) = (b, c)
rewrite [Nat.mod_eq_of_lt h2.left.right,

Nat.mod_eq_of_lt h2.right.right]
rfl
done

done
done

lemma Set_rp_below_prod {m n : Nat} (h1 : rel_prime m n) :
Set_rp_below (m * n) ∼ (Set_rp_below m) ×ₛ (Set_rp_below n) :=

equinum_image (mod_mod_one_one_on h1) (mod_mod_image h1)

We finally have everything we need to prove Theorem 7.4.4.

lemma eq_numElts_of_equinum {U V : Type} {A : Set U} {B : Set V} {n : Nat}
(h1 : A ∼ B) (h2 : numElts A n) : numElts B n := by

rewrite [numElts_def] at h2 --h2 : I n ∼ A
rewrite [numElts_def] --Goal : I n ∼ B
show I n ∼ B from Theorem_8_1_3_3 h2 h1
done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

299

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

theorem Theorem_7_4_4 {m n : Nat} (h1 : rel_prime m n) :
phi (m * n) = (phi m) * (phi n) := by

have h2 : numElts (Set_rp_below m) (phi m) := phi_is_numElts m
have h3 : numElts (Set_rp_below n) (phi n) := phi_is_numElts n
have h4 : numElts (Set_rp_below (m * n)) (phi (m * n)) :=

phi_is_numElts (m * n)
have h5 : numElts (Set_rp_below m ×ₛ Set_rp_below n) (phi (m * n)) :=

eq_numElts_of_equinum (Set_rp_below_prod h1) h4
have h6 : numElts (Set_rp_below m ×ₛ Set_rp_below n) (phi m * phi n) :=

numElts_prod h2 h3
show phi (m * n) = phi m * phi n from numElts_unique h5 h6
done

Exercises

1. lemma remove_one_iff {U V : Type}
{A : Set U} {B : Set V} {R : Rel U V} (h1 : matching R A B)
{u : U} (h2 : u ∈ A) (v : V) {x : U} (h3 : x ∈ A \ {u}) :
∃ w ∈ A, ∀ (y : V), remove_one R u v x y ↔ R w y := sorry

2. lemma inv_one_match {U V : Type} (a : U) (b : V) :
invRel (one_match a b) = one_match b a := sorry

3. theorem one_match_fcnl {U V : Type} (a : U) (b : V) :
fcnl_on (one_match a b) {a} := sorry

4. --Hint: Use the previous two exercises.
lemma one_match_match {U V : Type} (a : U) (b : V) :

matching (one_match a b) {a} {b} := sorry

5. lemma neb_nrpb (m : Nat) : ∀ ⦃k : Nat⦄, k ≤ m →
num_elts_below (Set_rp_below m) k (num_rp_below m k) := sorry

6. lemma prod_fcnl {U V W X : Type} {R : Rel U V} {S : Rel W X}
{A : Set U} {C : Set W} (h1 : fcnl_on R A) (h2 : fcnl_on S C) :
fcnl_on (R ×ᵣ S) (A ×ₛ C) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

300

https://doi.org/10.1017/9781108539890

8.1½. Debts Paid

7. --Hint: Use the previous exercise.
lemma prod_match {U V W X : Type}

{A : Set U} {B : Set V} {C : Set W} {D : Set X}
{R : Rel U V} {S : Rel W X}
(h1 : matching R A B) (h2 : matching S C D) :
matching (R ×ᵣ S) (A ×ₛ C) (B ×ₛ D) := sorry

8. --Hint: You might find it helpful to apply the theorem div_mod_char
--from the exercises of Section 6.4.
lemma qr_image (m n : Nat) :

image (qr n) (I (m * n)) = I m ×ₛ I n := sorry

9. theorem Theorem_8_1_2_2
{U V : Type} {A C : Set U} {B D : Set V}
(h1 : empty (A ∩ C)) (h2 : empty (B ∩ D))
(h3 : A ∼ B) (h4 : C ∼ D) : A ∪ C ∼ B ∪ D := sorry

10. lemma shift_I_equinum (n m : Nat) : I m ∼ I (n + m) \ I n := sorry

11. theorem Theorem_8_1_7 {U : Type} {A B : Set U} {n m : Nat}
(h1 : empty (A ∩ B)) (h2 : numElts A n) (h3 : numElts B m) :
numElts (A ∪ B) (n + m) := sorry

12. theorem equinum_sub {U V : Type} {A C : Set U} {B : Set V}
(h1 : A ∼ B) (h2 : C ⊆ A) : ∃ (D : Set V), D ⊆ B ∧ C ∼ D := sorry

13. theorem Exercise_8_1_8b {U : Type} {A B : Set U}
(h1 : finite A) (h2 : B ⊆ A) : finite B := sorry

14. --Hint: Use Like_Exercise_6_2_16 from the exercises of Section 6.2
lemma N_not_finite : ¬finite (Univ Nat) := sorry

15. theorem denum_not_finite {U : Type} {A : Set U}
(h : denum A) : ¬finite A := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

301

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

8.2. Countable and Uncountable Sets

Section 8.2 of HTPI shows that many set-theoretic operations, when applied to countable sets,
produce results that are countable. For example, the first part of Theorem 8.2.1 shows that a
Cartesian product of countable sets is countable. Our proof of this statement in Lean is based
on Theorem_8_1_2_1 and the countability of Univ (Nat × Nat). We also use an exercise from
Section 8.1.

theorem Exercise_8_1_17 {U : Type} {A B : Set U}
(h1 : B ⊆ A) (h2 : ctble A) : ctble B := sorry

theorem Theorem_8_2_1_1 {U V : Type} {A : Set U} {B : Set V}
(h1 : ctble A) (h2 : ctble B) : ctble (A ×ₛ B) := by

rewrite [ctble_iff_equinum_set_nat] at h1
rewrite [ctble_iff_equinum_set_nat] at h2
obtain (I : Set Nat) (h3 : I ∼ A) from h1
obtain (J : Set Nat) (h4 : J ∼ B) from h2
have h5 : I ×ₛ J ∼ A ×ₛ B := Theorem_8_1_2_1 h3 h4
have h6 : I ×ₛ J ⊆ Univ (Nat × Nat) := by

fix p : Nat × Nat
assume h6 : p ∈ I ×ₛ J
show p ∈ Univ (Nat × Nat) from elt_Univ p
done

have h7 : ctble (Univ (Nat × Nat)) := by
define --Goal : finite (Univ (Nat × Nat)) ∨ denum (Univ (Nat × Nat))
apply Or.inr
rewrite [denum_def]
show Univ Nat ∼ Univ (Nat × Nat) from Theorem_8_1_3_2 NxN_equinum_N
done

have h8 : ctble (I ×ₛ J) := Exercise_8_1_17 h6 h7
show ctble (A ×ₛ B) from ctble_of_equinum_ctble h5 h8
done

The second part of Theorem 8.2.1 shows that a union of two countable sets is countable, but,
as we ask you to show in the exercises, it is superseded by Theorem 8.2.2, which says that a
union of a countable family of countable sets is countable. So we will skip ahead to Theorem
8.2.2. Here’s how we state the theorem in Lean:

theorem Theorem_8_2_2 {U : Type} {F : Set (Set U)}
(h1 : ctble F) (h2 : ∀ A ∈ F, ctble A) : ctble (⋃₀ F)

In our proof, we will use the characterization of countability from Theorem_8_1_5_2. Thus, we

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

302

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

will use the hypotheses h1 and h2 to conclude that there is a relation R : Rel Nat (Set U) such
that fcnl_onto_from_nat R F, and also that for each A ∈ F there is a relation SA : Rel Nat
U such that fcnl_onto_from_nat SA A. We begin by proving an easier version of the theorem,
where we assume that we have a function f : Set U → Rel Nat U that supplies, for each A ∈
F, the required relation SA. Imitating the proof in HTPI, we can use R and f to construct the
relation needed to prove that ⋃₀ F is countable.

def enum_union_fam {U : Type}
(F : Set (Set U)) (f : Set U → Rel Nat U) (R : Rel Nat (Set U))
(n : Nat) (a : U) : Prop := ∃ (p : Nat × Nat), fnnn p = n ∧

∃ A ∈ F, R p.1 A ∧ (f A) p.2 a

lemma Lemma_8_2_2_1 {U : Type} {F : Set (Set U)} {f : Set U → Rel Nat U}
(h1 : ctble F) (h2 : ∀ A ∈ F, fcnl_onto_from_nat (f A) A) :
ctble (⋃₀ F) := by

rewrite [Theorem_8_1_5_2] at h1
rewrite [Theorem_8_1_5_2]
obtain (R : Rel Nat (Set U)) (h3 : fcnl_onto_from_nat R F) from h1
define at h3
have Runiqueval : unique_val_on_N R := h3.left
have Ronto : nat_rel_onto R F := h3.right
set S : Rel Nat U := enum_union_fam F f R
apply Exists.intro S
define
apply And.intro
· -- Proof of unique_val_on_N S

define
fix n : Nat; fix a1 : U; fix a2 : U
assume Sna1 : S n a1
assume Sna2 : S n a2 --Goal : a1 = a2
define at Sna1; define at Sna2
obtain ((i1, j1) : Nat × Nat) (h4 : fnnn (i1, j1) = n ∧

∃ A ∈ F, R i1 A ∧ f A j1 a1) from Sna1
obtain (A1 : Set U) (Aija1 : A1 ∈ F ∧ R i1 A1 ∧ f A1 j1 a1)

from h4.right
obtain ((i2, j2) : Nat × Nat) (h5 : fnnn (i2, j2) = n ∧

∃ A ∈ F, R i2 A ∧ f A j2 a2) from Sna2
obtain (A2 : Set U) (Aija2 : A2 ∈ F ∧ R i2 A2 ∧ f A2 j2 a2)

from h5.right
rewrite [←h5.left] at h4
have h6 : (i1, j1) = (i2, j2) :=

fnnn_one_one (i1, j1) (i2, j2) h4.left

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

303

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

have h7 : i1 = i2 ∧ j1 = j2 := Prod.mk.inj h6
rewrite [h7.left, h7.right] at Aija1

--Aija1 : A1 ∈ F ∧ R i2 A1 ∧ f A1 j2 a1
define at Runiqueval
have h8 : A1 = A2 := Runiqueval Aija1.right.left Aija2.right.left
rewrite [h8] at Aija1 --Aija1 : A2 ∈ F ∧ R i2 A2 ∧ f A2 j2 a1
have fA2fcnlonto : fcnl_onto_from_nat (f A2) A2 := h2 A2 Aija2.left
define at fA2fcnlonto
have fA2uniqueval : unique_val_on_N (f A2) := fA2fcnlonto.left
define at fA2uniqueval
show a1 = a2 from fA2uniqueval Aija1.right.right Aija2.right.right
done

· -- Proof of nat_rel_onto S (⋃₀ F)
define
fix x : U
assume h4 : x ∈ ⋃₀ F --Goal : ∃ (n : Nat), S n x
define at h4
obtain (A : Set U) (h5 : A ∈ F ∧ x ∈ A) from h4
define at Ronto
obtain (i : Nat) (h6 : R i A) from Ronto h5.left
have fAfcnlonto : fcnl_onto_from_nat (f A) A := h2 A h5.left
define at fAfcnlonto
have fAonto : nat_rel_onto (f A) A := fAfcnlonto.right
define at fAonto
obtain (j : Nat) (h7 : f A j x) from fAonto h5.right
apply Exists.intro (fnnn (i, j))
define --Goal : ∃ (p : Nat × Nat), fnnn p = fnnn (i, j) ∧

-- ∃ A ∈ F, R p.1 A ∧ f A p.2 x
apply Exists.intro (i, j)
apply And.intro
· -- Proof that fnnn (i, j) = fnnn (i, j)

rfl
done

· -- Proof that ∃ A ∈ F, R (i, j).1 A ∧ f A (i, j).2 x
apply Exists.intro A
show A ∈ F ∧ R (i, j).1 A ∧ f A (i, j).2 x from

And.intro h5.left (And.intro h6 h7)
done

done
done

How can we use Lemma_8_2_2_1 to prove Theorem_8_2_2? We must use the hypothesis h2 : ∀

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

304

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

A ∈ F, ctble A in Theorem_8_2_2 to produce the function f required in Lemma_8_2_2_1. As we
have already observed, Theorem_8_1_5_2 guarantees that for each A ∈ F, an appropriate relation
SA : Rel Nat U exists. We need a function f that will choose such a relation SA for each A. A
function with this property is often called a choice function. And now we come to a delicate
point that was skipped over in HTPI : to prove the existence of a choice function, we must use
a statement called the axiom of choice.1

The distinction between the existence of an appropriate relation SA for each A and the existence
of a function that chooses such a relation for each A is a subtle one. Perhaps for this reason,
many people find the axiom of choice to be intuitively obvious. HTPI took advantage of this
intuition to skip over this step in the proof without comment. But of course Lean won’t let us
skip anything!

To implement the axiom of choice, Lean uses a function called Classical.choose. Given a
proof h of a statement of the form ∃ (x : U), P x, the expression Classical.choose h produces
(“chooses”) some u : U such that P u is true. There is also a theorem Classical.choose_spec
that guarantees that the Classical.choose function meets its specification—that is, P
(Classical.choose h) is true. Using these, we can prove a lemma that will bridge the gap
between Lemma_8_2_2_1 and Theorem_8_2_2.

lemma Lemma_8_2_2_2 {U : Type} {F : Set (Set U)} (h : ∀ A ∈ F, ctble A) :
∃ (f : Set U → Rel Nat U), ∀ A ∈ F, fcnl_onto_from_nat (f A) A := by

have h1 : ∀ (A : Set U), ∃ (SA : Rel Nat U),
A ∈ F → fcnl_onto_from_nat SA A := by

fix A : Set U
by_cases h2 : A ∈ F
· -- Case 1. h2 : A ∈ F

have h3 : ctble A := h A h2
rewrite [Theorem_8_1_5_2] at h3
obtain (SA : Rel Nat U) (h4 : fcnl_onto_from_nat SA A) from h3
apply Exists.intro SA
assume h5 : A ∈ F
show fcnl_onto_from_nat SA A from h4
done

· -- Case 2. h2 : A ∉ F
apply Exists.intro (emptyRel Nat U)
assume h3 : A ∈ F
show fcnl_onto_from_nat (emptyRel Nat U) A from absurd h3 h2
done

done

1The axiom of choice was first stated by Ernst Zermelo in 1904. You can learn more about it in Gregory H.
Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence, Dover Publications, 2013. See
also https://en.wikipedia.org/wiki/Axiom_of_choice.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

305

https://en.wikipedia.org/wiki/Axiom_of_choice
https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

set f : Set U → Rel Nat U := fun (A : Set U) => Classical.choose (h1 A)
apply Exists.intro f
fix A : Set U
show A ∈ F → fcnl_onto_from_nat (f A) A from Classical.choose_spec (h1 A)
done

Notice that the domain of the function f in Lemma_8_2_2_2 is Set U, not F. Thus, we must
produce a relation SA for every A : Set U, but it is only when A ∈ F that we care what SA is.
Thus, the proof above just picks a default value (emptyRel Nat U) when A ∉ F.

We now have everything in place to prove Theorem_8_2_2:

theorem Theorem_8_2_2 {U : Type} {F : Set (Set U)}
(h1 : ctble F) (h2 : ∀ A ∈ F, ctble A) : ctble (⋃₀ F) := by

obtain (f : Set U → Rel Nat U) (h3 : ∀ A ∈ F, fcnl_onto_from_nat (f A) A)
from Lemma_8_2_2_2 h2

show ctble (⋃₀ F) from Lemma_8_2_2_1 h1 h3
done

By the way, we can now explain a mystery from Section 5.1. The reason we skipped the proof
of the right-to-left direction of func_from_graph is that the proof uses Classical.choose and
Classical.choose_spec. Now that you know about this function and theorem, we can show
you the proof.

theorem func_from_graph_rtl {A B : Type} (F : Set (A × B)) :
is_func_graph F → (∃ (f : A → B), graph f = F) := by

assume h1 : is_func_graph F
define at h1 --h1 : ∀ (x : A), ∃! (y : B), (x, y) ∈ F
have h2 : ∀ (x : A), ∃ (y : B), (x, y) ∈ F := by

fix x : A
obtain (y : B) (h3 : (x, y) ∈ F)

(h4 : ∀ (y1 y2 : B), (x, y1) ∈ F → (x, y2) ∈ F → y1 = y2) from h1 x
show ∃ (y : B), (x, y) ∈ F from Exists.intro y h3
done

set f : A → B := fun (x : A) => Classical.choose (h2 x)
apply Exists.intro f
apply Set.ext
fix (x, y) : A × B
have h3 : (x, f x) ∈ F := Classical.choose_spec (h2 x)
apply Iff.intro
· -- (→)

assume h4 : (x, y) ∈ graph f

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

306

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

define at h4 --h4 : f x = y
rewrite [h4] at h3
show (x, y) ∈ F from h3
done

· -- (←)
assume h4 : (x, y) ∈ F
define --Goal : f x = y
obtain (z : B) (h5 : (x, z) ∈ F)

(h6 : ∀ (y1 y2 : B), (x, y1) ∈ F → (x, y2) ∈ F → y1 = y2) from h1 x
show f x = y from h6 (f x) y h3 h4
done

done

There is one more theorem in Section 8.2 of HTPI showing that a set-theoretic operation,
when applied to a countable set, gives a countable result. Theorem 8.2.4 says that if a set 𝐴
is countable, then the set of all finite sequences of elements of 𝐴 is also countable. In HTPI,
finite sequences are represented by functions, but in Lean it is easier to use lists. Thus, if A
has type Set U, then we define a finite sequence of elements of A to be a list l : List U with
the property that every entry of l is an element of A. Letting seq A denote the set of all finite
sequences of elements of A, our version of Theorem 8.2.4 will say that if A is countable, then
so is seq A.

def seq {U : Type} (A : Set U) : Set (List U) :=
{l : List U | ∀ x ∈ l, x ∈ A}

lemma seq_def {U : Type} (A : Set U) (l : List U) :
l ∈ seq A ↔ ∀ x ∈ l, x ∈ A := by rfl

theorem Theorem_8_2_4 {U : Type} {A : Set U}
(h1 : ctble A) : ctble (seq A)

Our proof of Theorem_8_2_4 will use exactly the same strategy as the proof in HTPI. We begin
by showing that, for every natural number n, the set of sequences of elements of A of length n
is countable. The proof is by mathematical induction. The base case is easy, because the only
sequence of length 0 is the nil list.

def seq_by_length {U : Type} (A : Set U) (n : Nat) : Set (List U) :=
{l : List U | l ∈ seq A ∧ l.length = n}

lemma sbl_base {U : Type} (A : Set U) : seq_by_length A 0 = {[]} := by
apply Set.ext
fix l : List U

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

307

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

apply Iff.intro
· -- (→)

assume h1 : l ∈ seq_by_length A 0
define at h1 --h1 : l ∈ seq A ∧ l.length = 0
rewrite [List.length_eq_zero] at h1
define
show l = [] from h1.right
done

· -- (←)
assume h1 : l ∈ {[]}
define at h1 --h1 : l = []
define --Goal : l ∈ seq A ∧ l.length = 0
apply And.intro _ (List.length_eq_zero.rtl h1)
define --Goal : ∀ x ∈ l, x ∈ A
fix x : U
assume h2 : x ∈ l
contradict h2 with h3
rewrite [h1]
show x ∉ [] from List.not_mem_nil x
done

done

For the induction step, the key idea is that A ×ₛ (seq_by_length A n) ∼ seq_by_length A (n
+ 1). To prove this, we define a function seq_cons U that matches up A ×ₛ (seq_by_length A
n) with seq_by_length A (n + 1).

def seq_cons (U : Type) (p : U × (List U)) : List U := p.1 :: p.2

lemma seq_cons_def {U : Type} (x : U) (l : List U) :
seq_cons U (x, l) = x :: l := by rfl

lemma seq_cons_one_one (U : Type) : one_to_one (seq_cons U) := by
fix (a1, l1) : U × List U; fix (a2, l2) : U × List U
assume h1 : seq_cons U (a1, l1) = seq_cons U (a2, l2)
rewrite [seq_cons_def, seq_cons_def] at h1 --h1 : a1 :: l1 = a2 :: l2
rewrite [List.cons_eq_cons] at h1 --h1 : a1 = a2 ∧ l1 = l2
rewrite [h1.left, h1.right]
rfl
done

lemma seq_cons_image {U : Type} (A : Set U) (n : Nat) :
image (seq_cons U) (A ×ₛ (seq_by_length A n)) =

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

308

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

seq_by_length A (n + 1) := sorry

lemma Lemma_8_2_4_1 {U : Type} (A : Set U) (n : Nat) :
A ×ₛ (seq_by_length A n) ∼ seq_by_length A (n + 1) :=

equinum_image (one_one_on_of_one_one (seq_cons_one_one U)
(A ×ₛ (seq_by_length A n))) (seq_cons_image A n)

With this preparation, we can now use singleton_one_elt to justify the base case of our
induction proof and Theorem_8_2_1_1 for the induction step.

lemma Lemma_8_2_4_2 {U : Type} {A : Set U} (h1 : ctble A) :
∀ (n : Nat), ctble (seq_by_length A n) := by

by_induc
· -- Base Case

rewrite [sbl_base] --Goal : ctble {[]}
define
apply Or.inl --Goal : finite {[]}
rewrite [finite_def]
apply Exists.intro 1 --Goal : numElts {[]} 1
show numElts {[]} 1 from singleton_one_elt []
done

· -- Induction Step
fix n : Nat
assume ih : ctble (seq_by_length A n)
have h2 : A ×ₛ (seq_by_length A n) ∼ seq_by_length A (n + 1) :=

Lemma_8_2_4_1 A n
have h3 : ctble (A ×ₛ (seq_by_length A n)) := Theorem_8_2_1_1 h1 ih
show ctble (seq_by_length A (n + 1)) from ctble_of_equinum_ctble h2 h3
done

done

Our next step is to show that the union of all of the sets seq_by_length A n, for n : Nat, is
seq A.

def sbl_set {U : Type} (A : Set U) : Set (Set (List U)) :=
{S : Set (List U) | ∃ (n : Nat), seq_by_length A n = S}

lemma Lemma_8_2_4_3 {U : Type} (A : Set U) : ⋃₀ (sbl_set A) = seq A := by
apply Set.ext
fix l : List U
apply Iff.intro
· -- (→)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

309

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

assume h1 : l ∈ ⋃₀ (sbl_set A)
define at h1
obtain (S : Set (List U)) (h2 : S ∈ sbl_set A ∧ l ∈ S) from h1
have h3 : S ∈ sbl_set A := h2.left
define at h3
obtain (n : Nat) (h4 : seq_by_length A n = S) from h3
have h5 : l ∈ S := h2.right
rewrite [←h4] at h5
define at h5
show l ∈ seq A from h5.left
done

· -- (←)
assume h1 : l ∈ seq A
define
set n : Nat := l.length
apply Exists.intro (seq_by_length A n)
apply And.intro
· -- Proof of seq_by_length A n ∈ sbl_set A

define
apply Exists.intro n
rfl
done

· -- Proof of l ∈ seq_by_length A n
define
apply And.intro h1
rfl
done

done
done

Of course, sbl_set A is countable. The easiest way to prove this is to apply an exercise from
Section 8.1.

theorem ctble_of_onto_func_from_N {U : Type} {A : Set U} {f : Nat → U}
(h1 : ∀ x ∈ A, ∃ (n : Nat), f n = x) : ctble A := sorry

lemma Lemma_8_2_4_4 {U : Type} (A : Set U) : ctble (sbl_set A) := by
have h1 : ∀ S ∈ sbl_set A, ∃ (n : Nat), seq_by_length A n = S := by

fix S : Set (List U)
assume h1 : S ∈ sbl_set A
define at h1
show ∃ (n : Nat), seq_by_length A n = S from h1

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

310

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

done
show ctble (sbl_set A) from ctble_of_onto_func_from_N h1
done

We now have everything we need to prove Theorem_8_2_4 as an application of Theorem_8_2_2.

theorem Theorem_8_2_4 {U : Type} {A : Set U}
(h1 : ctble A) : ctble (seq A) := by

set F : Set (Set (List U)) := sbl_set A
have h2 : ctble F := Lemma_8_2_4_4 A
have h3 : ∀ S ∈ F, ctble S := by

fix S : Set (List U)
assume h3 : S ∈ F
define at h3
obtain (n : Nat) (h4 : seq_by_length A n = S) from h3
rewrite [←h4]
show ctble (seq_by_length A n) from Lemma_8_2_4_2 h1 n
done

rewrite [←Lemma_8_2_4_3 A]
show ctble (⋃₀ sbl_set A) from Theorem_8_2_2 h2 h3
done

There is a set-theoretic operation that can produce an uncountable set from a countable set:
the power set operation. HTPI demonstrates this by proving Cantor’s theorem (Theorem
8.2.5), which says that P(ℤ+) is uncountable. The strategy for this proof is tricky; it involves
defining a set 𝐷 using a method called diagonalization. For an explanation of the motivation
behind this strategy, see HTPI. Here we will use this strategy to prove that P (Univ Nat) is
uncountable.

lemma set_elt_powerset_univ {U : Type} (A : Set U) :
A ∈ P (Univ U) := by

fix x : U
assume h : x ∈ A
show x ∈ Univ U from elt_Univ x
done

theorem Cantor's_theorem : ¬ctble (P (Univ Nat)) := by
by_contra h1
rewrite [Theorem_8_1_5_2] at h1
obtain (R : Rel Nat (Set Nat))

(h2 : fcnl_onto_from_nat R (P (Univ Nat))) from h1
define at h2

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

311

https://doi.org/10.1017/9781108539890

8.2. Countable and Uncountable Sets

have h3 : unique_val_on_N R := h2.left
have h4 : nat_rel_onto R (P (Univ Nat)) := h2.right
set D : Set Nat := {n : Nat | ∃ (X : Set Nat), R n X ∧ n ∉ X}
have h5 : D ∈ P (Univ Nat) := set_elt_powerset_univ D
define at h4
obtain (n : Nat) (h6 : R n D) from h4 h5
by_cases h7 : n ∈ D
· -- Case 1. h7 : n ∈ D

contradict h7
define at h7
obtain (X : Set Nat) (h8 : R n X ∧ n ∉ X) from h7
define at h3
have h9 : D = X := h3 h6 h8.left
rewrite [h9]
show n ∉ X from h8.right
done

· -- Case 2. h7 : n ∉ D
contradict h7
define
show ∃ (X : Set Nat), R n X ∧ n ∉ X from

Exists.intro D (And.intro h6 h7)
done

done

As a consequence of Theorem 8.2.5, HTPI shows that ℝ is uncountable. The proof is not hard,
but it requires facts about the decimal expansions of real numbers. Developing those facts in
Lean would take us too far afield, so we will skip the proof.

Exercises

1. lemma pair_ctble {U : Type} (a b : U) : ctble {a, b} := sorry

2. --Hint: Use the previous exercise and Theorem_8_2_2
theorem Theorem_8_2_1_2 {U : Type} {A B : Set U}

(h1 : ctble A) (h2 : ctble B) : ctble (A ∪ B) := sorry

3. lemma seq_cons_image {U : Type} (A : Set U) (n : Nat) :
image (seq_cons U) (A ×ₛ (seq_by_length A n)) =
seq_by_length A (n + 1) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

312

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

4. --Hint: Use induction on the size of A
lemma set_to_list {U : Type} {A : Set U} (h : finite A) :

∃ (l : List U), ∀ (x : U), x ∈ l ↔ x ∈ A := sorry

5. --Hint: Use the previous exercise and Theorem_8_2_4
theorem Like_Exercise_8_2_4 {U : Type} {A : Set U} (h : ctble A) :

ctble {X : Set U | X ⊆ A ∧ finite X} := sorry

6. theorem Exercise_8_2_6b (A B C : Type) :
Univ ((A × B) → C) ∼ Univ (A → (B → C)) := sorry

7. theorem Like_Exercise_8_2_7 : ∃ (P : Set (Set Nat)),
partition P ∧ denum P ∧ ∀ X ∈ P, denum X := sorry

8. theorem unctbly_many_inf_set_nat :
¬ctble {X : Set Nat | ¬finite X} := sorry

9. theorem Exercise_8_2_8 {U : Type} {A B : Set U}
(h : empty (A ∩ B)) : P (A ∪ B) ∼ P A ×ₛ P B := sorry

8.3. The Cantor–Schröder–Bernstein Theorem

The final section of HTPI proves the Cantor–Schröder–Bernstein theorem. The theorem says
that if 𝐴 and 𝐵 are sets such that each is equinumerous with a subset of the other, then 𝐴
and 𝐵 are equinumerous. In the notation we are using in this chapter, it can be stated as
follows:

theorem Cantor_Schroeder_Bernstein_theorem
{U V : Type} {A C : Set U} {B D : Set V}
(h1 : C ⊆ A) (h2 : D ⊆ B) (h3 : A ∼ D) (h4 : C ∼ B) : A ∼ B

The hypotheses h3 and h4 imply that there are matchings R from A to D and S from C to B. To
prove the theorem, we must construct a matching T from A to B. Imitating the proof in HTPI,
we will do this by defining a set X ⊆ A and then combining R restricted to X with S restricted
to A \ X. In other words, T x y will be defined to mean:

(x ∈ X ∧ R x y) ∨ (x ∉ X ∧ S x y)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

313

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

Which elements of A should be in X? We start with the fact that, since S is a relation within
C and B, elements of A \ C are not paired with anything by S, so they must be in X. In other
words, if we define X0 to be A \ C, then we must have X0 ⊆ X.

Now suppose x ∈ X0, a ∈ A, y ∈ B, and R x y and S a y are both true. In this situation we
will say that x and a have a common image under R and S. If a ∉ X, then we will have T x y
and T a y, which means that T will fail to be a matching. Thus, we must have a ∈ X. In other
words, if we define X1 to be the set of all a such that for some x ∈ X0, x and a have a common
image under R and S, then we’ll need to have X1 ⊆ X. But now the same reasoning applies to
X1: if X2 is the set of all a such that for some x ∈ X1, x and a have a common image, then X2
must also be contained in X. Iterating this reasoning motivates the following definition:

def rep_common_image
{U V : Type} (R S : Rel U V) (X0 : Set U) (n : Nat) : Set U :=
match n with

| 0 => X0
| m + 1 => {a : U | ∃ x ∈ rep_common_image R S X0 m,

∃ (y : V), R x y ∧ S a y}

lemma rep_common_image_step
{U V : Type} (R S : Rel U V) (X0 : Set U) (m : Nat) (a : U) :
a ∈ rep_common_image R S X0 (m + 1) ↔
∃ x ∈ rep_common_image R S X0 m, ∃ (y : V), R x y ∧ S a y := by rfl

The sets rep_common_image R S X0 n correspond to the sets 𝐴𝑛 in HTPI. As in HTPI, to define
X we take the union of these sets.

def cum_rep_image {U V : Type} (R S : Rel U V) (X0 : Set U) : Set U :=
{a : U | ∃ (n : Nat), a ∈ rep_common_image R S X0 n}

In our proof of the Cantor–Schröder–Bernstein theorem, we will define X to be the set
cum_rep_image R S X0, and therefore the matching T will be the relation csb_match R S X0
defined as follows:

def csb_match {U V : Type} (R S : Rel U V) (X0 : Set U)
(x : U) (y : V) : Prop := x ∈ cum_rep_image R S X0 ∧ R x y ∨

x ∉ cum_rep_image R S X0 ∧ S x y

It will be convenient to prove a few simple lemmas about these definitions. Our first two
lemmas spell out that, for x ∈ X, T x y means R x y, and for x ∉ X, T x y means S x y.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

314

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

lemma csb_match_cri {U V : Type} {R S : Rel U V} {X0 : Set U}
{x : U} {y : V} (h1 : csb_match R S X0 x y)
(h2 : x ∈ cum_rep_image R S X0) : R x y := by

by_cases on h1
· -- Case 1. h1 : x ∈ cum_rep_image R S X0 ∧ R x y

show R x y from h1.right
done

· -- Case 2. h1 : x ∉ cum_rep_image R S X0 ∧ S x y
show R x y from absurd h2 h1.left
done

done

lemma csb_match_not_cri {U V : Type} {R S : Rel U V} {X0 : Set U}
{x : U} {y : V} (h1 : csb_match R S X0 x y)
(h2 : x ∉ cum_rep_image R S X0) : S x y := sorry

We will also need to know that it cannot happen that T x1 y, T x2 y, x1 ∈ X, and x2 ∉ X:

lemma csb_cri_of_cri
{U V : Type} {R S : Rel U V} {X0 : Set U} {x1 x2 : U} {y : V}
(h1 : csb_match R S X0 x1 y) (h2 : csb_match R S X0 x2 y)
(h3 : x1 ∈ cum_rep_image R S X0) : x2 ∈ cum_rep_image R S X0 := by

have h4 : R x1 y := csb_match_cri h1 h3
by_contra h5
have h6 : S x2 y := csb_match_not_cri h2 h5
contradict h5 --Goal : x2 ∈ cum_rep_image R S X0
define at h3
define
obtain (n : Nat) (h7 : x1 ∈ rep_common_image R S X0 n) from h3
apply Exists.intro (n + 1) --Goal : x2 ∈ rep_common_image R S X0 (n + 1)
rewrite [rep_common_image_step]
apply Exists.intro x1

--Goal : x1 ∈ rep_common_image R S X0 n ∧ ∃ (y : V), R x1 y ∧ S x2 y
apply And.intro h7
show ∃ (y : V), R x1 y ∧ S x2 y from Exists.intro y (And.intro h4 h6)
done

With that preparation, we are ready to prove the theorem.

theorem Cantor_Schroeder_Bernstein_theorem
{U V : Type} {A C : Set U} {B D : Set V}
(h1 : C ⊆ A) (h2 : D ⊆ B) (h3 : A ∼ D) (h4 : C ∼ B) : A ∼ B := by

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

315

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

obtain (R : Rel U V) (R_match_AD : matching R A D) from h3
obtain (S : Rel U V) (S_match_CB : matching S C B) from h4
define at R_match_AD; define at S_match_CB
set X0 : Set U := A \ C
set X : Set U := cum_rep_image R S X0
set T : Rel U V := csb_match R S X0
have Tdef : ∀ (x : U) (y : V),

T x y ↔ (x ∈ X ∧ R x y) ∨ (x ∉ X ∧ S x y) := by
fix x : U; fix y : V
rfl
done

have A_not_X_in_C : A \ X ⊆ C := by
fix a : U
assume h5 : a ∈ A \ X
contradict h5.right with h6 --h6 : a ∉ C; Goal : a ∈ X
define --Goal : ∃ (n : Nat), a ∈ rep_common_image R S X0 n
apply Exists.intro 0
define
show a ∈ A ∧ a ∉ C from And.intro h5.left h6
done

define --Goal : ∃ (R : Rel U V), matching R A B
apply Exists.intro T
define --Goal : rel_within T A B ∧ fcnl_on T A ∧ fcnl_on (invRel T) B
apply And.intro
· -- Proof of rel_within T A B

define
fix a : U; fix b : V
assume h5 : T a b
rewrite [Tdef] at h5 --h5 : a ∈ X ∧ R a b ∨ a ∉ X ∧ S a b
by_cases on h5
· -- Case 1. h5 : a ∈ X ∧ R a b

have h6 : a ∈ A ∧ b ∈ D := R_match_AD.left h5.right
show a ∈ A ∧ b ∈ B from And.intro h6.left (h2 h6.right)
done

· -- Case 2. h5 : a ∉ X ∧ S a b
have h6 : a ∈ C ∧ b ∈ B := S_match_CB.left h5.right
show a ∈ A ∧ b ∈ B from And.intro (h1 h6.left) h6.right
done

done
· -- Proof of fcnl_ons

apply And.intro
· -- Proof of fcnl_on T A

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

316

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

define
fix a : U
assume aA : a ∈ A --Goal : ∃! (y : V), T a y
exists_unique
· -- Existence

by_cases h5 : a ∈ X
· -- Case 1. h5 : a ∈ X

obtain (b : V) (Rab : R a b) from
fcnl_exists R_match_AD.right.left aA

apply Exists.intro b
rewrite [Tdef]
show a ∈ X ∧ R a b ∨ a ∉ X ∧ S a b from
Or.inl (And.intro h5 Rab)

done
· -- Case 2. h5 : a ∉ X

have aC : a ∈ C := A_not_X_in_C (And.intro aA h5)
obtain (b : V) (Sab : S a b) from
fcnl_exists S_match_CB.right.left aC

apply Exists.intro b
rewrite [Tdef]
show a ∈ X ∧ R a b ∨ a ∉ X ∧ S a b from
Or.inr (And.intro h5 Sab)

done
done

· -- Uniqueness
fix b1 : V; fix b2 : V
assume Tab1 : T a b1
assume Tab2 : T a b2
by_cases h5 : a ∈ X
· -- Case 1. h5 : a ∈ X

have Rab1 : R a b1 := csb_match_cri Tab1 h5
have Rab2 : R a b2 := csb_match_cri Tab2 h5
show b1 = b2 from
fcnl_unique R_match_AD.right.left aA Rab1 Rab2

done
· -- Case 2. h5 : a ∉ X

have Sab1 : S a b1 := csb_match_not_cri Tab1 h5
have Sab2 : S a b2 := csb_match_not_cri Tab2 h5
have aC : a ∈ C := A_not_X_in_C (And.intro aA h5)
show b1 = b2 from
fcnl_unique S_match_CB.right.left aC Sab1 Sab2

done

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

317

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

done
done

· -- Proof of fcnl_on (invRel T) B
define
fix b : V
assume bB : b ∈ B
obtain (c : U) (Scb : S c b) from

fcnl_exists S_match_CB.right.right bB
have cC : c ∈ C := (S_match_CB.left Scb).left
exists_unique
· -- Existence

by_cases h5 : c ∈ X
· -- Case 1. h5 : c ∈ X

define at h5
obtain (n : Nat) (h6 : c ∈ rep_common_image R S X0 n) from h5
have h7 : n ≠ 0 := by
by_contra h7
rewrite [h7] at h6
define at h6 --h6 : c ∈ A ∧ c ∉ C
show False from h6.right cC
done

obtain (m : Nat) (h8 : n = m + 1) from
exists_eq_add_one_of_ne_zero h7

rewrite [h8] at h6
rewrite [rep_common_image_step] at h6
obtain (a : U) (h9 : a ∈ rep_common_image R S X0 m ∧
∃ (y : V), R a y ∧ S c y) from h6

apply Exists.intro a
rewrite [invRel_def, Tdef]
apply Or.inl --Goal : a ∈ X ∧ R a b
obtain (y : V) (h10 : R a y ∧ S c y) from h9.right
have h11 : y = b :=
fcnl_unique S_match_CB.right.left cC h10.right Scb

rewrite [h11] at h10
apply And.intro _ h10.left
define
show ∃ (n : Nat), a ∈ rep_common_image R S X0 n from
Exists.intro m h9.left

done
· -- Case 2. h5 : c ∉ X

apply Exists.intro c

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

318

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

rewrite [invRel_def, Tdef]
show c ∈ X ∧ R c b ∨ c ∉ X ∧ S c b from
Or.inr (And.intro h5 Scb)

done
done

· -- Uniqueness
fix a1 : U; fix a2 : U
assume Ta1b : T a1 b
assume Ta2b : T a2 b
by_cases h5 : a1 ∈ X
· -- Case 1. h5 : a1 ∈ X

have h6 : a2 ∈ X := csb_cri_of_cri Ta1b Ta2b h5
have Ra1b : R a1 b := csb_match_cri Ta1b h5
have Ra2b : R a2 b := csb_match_cri Ta2b h6
have h7 : b ∈ D := (R_match_AD.left Ra1b).right
show a1 = a2 from
fcnl_unique R_match_AD.right.right h7 Ra1b Ra2b

done
· -- Case 2. h5 : a1 ∉ X

have h6 : a2 ∉ X := by
by_contra h6
show False from h5 (csb_cri_of_cri Ta2b Ta1b h6)
done

have Sa1b : S a1 b := csb_match_not_cri Ta1b h5
have Sa2b : S a2 b := csb_match_not_cri Ta2b h6
show a1 = a2 from
fcnl_unique S_match_CB.right.right bB Sa1b Sa2b

done
done

done
done

done

Exercises

1. theorem CSB_func {U V : Type} {f : U → V} {g : V → U}
(h1 : one_to_one f) (h2 : one_to_one g) : Univ U ∼ Univ V := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

319

https://doi.org/10.1017/9781108539890

8.3. The Cantor–Schröder–Bernstein Theorem

2. theorem intervals_equinum :
{x : Real | 0 < x ∧ x < 1} ∼ {x : Real | 0 < x ∧ x ≤ 1} := sorry

The next six exercises lead up to a proof that the set of all equivalence relations on the natural
numbers is equinumerous with the power set of the natural numbers. These exercises use the
following definitions:

def EqRel (A : Type) : Set (BinRel A) :=
{R : BinRel A | equiv_rel R}

def Part (A : Type) : Set (Set (Set A)) :=
{P : Set (Set A) | partition P}

def EqRelExt (A : Type) : Set (Set (A × A)) :=
{E : Set (A × A) | ∃ (R : BinRel A), equiv_rel R ∧ extension R = E}

def shift_and_zero (X : Set Nat) : Set Nat :=
{x + 2 | x ∈ X} ∪ {0}

def saz_pair (X : Set Nat) : Set (Set Nat) :=
{shift_and_zero X, (Univ Nat) \ (shift_and_zero X)}

3. theorem EqRel_equinum_Part (A : Type) : EqRel A ∼ Part A := sorry

4. theorem EqRel_equinum_EqRelExt (A : Type) :
EqRel A ∼ EqRelExt A := sorry

5. theorem EqRel_Nat_equinum_sub_PN :
∃ (D : Set (Set Nat)), D ⊆ P (Univ Nat) ∧ EqRel Nat ∼ D := sorry

6. theorem saz_pair_part (X : Set Nat) : partition (saz_pair X) := sorry

7. theorem sub_EqRel_Nat_equinum_PN :
∃ (C : Set (BinRel Nat)), C ⊆ EqRel Nat ∧ C ∼ P (Univ Nat) := sorry

8. theorem EqRel_Nat_equinum_PN : EqRel Nat ∼ P (Univ Nat) := sorry

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

320

https://doi.org/10.1017/9781108539890

Appendix

Tactics Used

Tactics marked with an asterisk (*) are defined in the file HTPIDefs.lean in the HTPI Lean
Package that accompanies this book. They will not work without that file. The others are
standard Lean tactics or are defined in Lean’s mathematics library, mathlib.

Tactic Where Introduced
apply Sections 3.1 & 3.2
apply? Section 3.6
assume* Introduction to Lean: A First Example
bicond_neg* Introduction to Lean: Tactic Mode
by_cases Section 3.5
by_cases on* Section 3.5
by_contra Sections 3.1 & 3.2
by_induc* Section 6.1
by_strong_induc* Section 6.4
conditional* Introduction to Lean: Tactic Mode
contradict* Sections 3.1 & 3.2
contrapos* Introduction to Lean: A First Example
decide Section 6.1
define* Introduction to Lean: Types
demorgan* Introduction to Lean: Tactic Mode
disj_syll* Section 3.5
double_neg* Introduction to Lean: Tactic Mode
exact Section 3.6
exists_unique* Section 3.6
fix* Section 3.3
have Introduction to Lean: A First Example
linarith Section 6.1
obtain* Section 3.3
or_left* Section 3.5
or_right* Section 3.5
push_neg Section 8.1
quant_neg* Section 3.3

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

321

https://doi.org/10.1017/9781108539890

Appendix

Tactic Where Introduced
rel Section 6.3
rewrite Section 3.6
rfl Section 3.7
ring Section 3.7
rw Section 3.7
set Section 4.5
show* Introduction to Lean: A First Example
trivial Section 7.2

Transitioning to Standard Lean

If you want to continue to use Lean to write mathematical proofs, you may want to learn more
about Lean. A good place to start is the Lean Community website. The resources there use
“standard” Lean, which is somewhat different from the Lean in this book.

In a few cases we have used notation in this book that differs from standard Lean notation.
For example, if h is a proof of P ↔ Q, then we have used h.ltr and h.rtl to denote proofs of the
left-to-right and right-to-left directions of the biconditional. The standard Lean notation for
these is h.mp and h.mpr, respectively (“mp” and “mpr” stand for “modus ponens” and “modus
ponens reverse”). As explained at the end of Section 5.4, the notations Pred U and Rel A B
denote the types U → Prop and A → B → Prop, respectively. Although Rel is standard notation
(defined in Lean’s math library mathlib), Pred is not; the notation BinRel A is also not standard
Lean. In place of Pred U you should use U → Prop, and in place of BinRel A you should use Rel
A A.

However, the biggest difference between the Lean in this book and standard Lean is that the
tactics marked with an asterisk in the table above are not a part of standard Lean. If you
want to learn to write proofs in standard Lean, you’ll need to learn replacements for those
tactics. We discuss some such replacements below. Some of these replacements are built into
Lean, and some are defined in mathlib.

•

assume, fix

If you are proving P → Q and you want to begin by assuming h : P, in standard Lean you
would begin your proof by writing intro h. You don’t need to specify that h is an identifier
for the assumption P; Lean will figure that out on its own.

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

322

https://leanprover-community.github.io/index.html
https://doi.org/10.1017/9781108539890

Appendix

If you are proving ∀ (x : U), P x and you want to begin by introducing the variable x to stand
for an arbitrary object of type U, in standard Lean you would begin your proof by writing
intro x. Again, you don’t need to specify the type of x, because Lean will figure it out.

Thus, the tactic intro does the job of both assume and fix. Furthermore, you can introduce
multiple assumptions or objects with a single use of the intro tactic: intro a b c is equivalent
to intro a; intro b; intro c.

•

bicond_neg, demorgan, double_neg, quant_neg

We have mostly used these tactics to reexpress negative statements as more useful positive
statements. The tactic push_neg can be used for this purpose.

•

by_cases on

If you have h : P ∨ Q, then you can break your proof into cases by using the tactic cases' h
with hP hQ. In case 1, h : P ∨ Q will be replaced by hP : P, and in case 2 it will be replaced by
hQ : Q. In both cases, you have to prove the original goal. You may also want to learn about
the tactics cases and rcases.

•

by_induc, by_strong_induc

We saw in Section 7.2 that if you are proving a statement of the form ∀ (l : List U), ...,
then you can begin a proof by induction on the length of l by using the tactic apply List.rec.
Similarly, if you are proving ∀ (n : Nat), ..., you can begin a proof by induction by using
the tactic apply Nat.recAux. For strong induction, you can use apply Nat.strongRec.

There are also tactics induction and induction' that you may want to learn about.

•

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

323

https://doi.org/10.1017/9781108539890

Appendix

conditional

The commands #check @imp_iff_not_or and #check @not_imp produce the results

@imp_iff_not_or : ∀ {a b : Prop}, a → b ↔ ¬a ∨ b
@not_imp : ∀ {a b : Prop}, ¬(a → b) ↔ a ∧ ¬b

Thus, rewrite [imp_iff_not_or] will convert a statement of the form P → Q into ¬P ∨ Q, and
rewrite [←imp_iff_not_or] will go in the other direction. Similarly, rewrite [not_imp] will
convert a statement of the form ¬(P → Q) into P ∧ ¬Q, and rewrite [←not_imp] will go in the
other direction.

•

contradict

Suppose your goal is False (as it would be if you are doing a proof by contradiction), and you
have h : ¬P. Recall that Lean treats ¬P as meaning the same thing as P → False, and therefore
h _ will prove the goal, if the blank is filled in which a proof of P. It follows that apply h will
set P as the goal. In other words, in this situation apply h has the same effect as contradict
h.

You could also get the same effect with the tactic suffices hP : P from h hP. Think of this
as meaning “it would suffice now to prove P, because if hP were a proof of P, then h hP would
prove the goal.” Lean therefore sets P to be the goal.

Similarly, in a proof by contradiction, if you have h : P, then suffices hnP : ¬P from hnP h
will set ¬P as the goal.

Yet another possibility is contrapose! h. (This is a variant on the contrapose! tactic, discussed
in the next section.)

•

contrapos

If your goal is a conditional statement, then the tactics contrapose and contrapose! will
replace the goal with its contrapositive (contrapose! also uses push_neg to try to simplify the
negated statements that arise when forming a contrapositive). You may also find the theorem
not_imp_not useful:

@not_imp_not : ∀ {a b : Prop}, ¬a → ¬b ↔ b → a

•

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

324

https://doi.org/10.1017/9781108539890

Appendix

define

The tactic whnf (which stands for “weak head normal form”) is similar to define, although it
sometimes produces results that are a little confusing.

Another way to write out definitions is to prove a lemma stating the definition and then use
that lemma as a rewriting rule in the rewrite tactic. See, for example, the use of the theorem
inv_def in Section 4.2.

•

disj_syll

The following theorems can be useful:

@Or.resolve_left : ∀ {a b : Prop}, a ∨ b → ¬a → b
@Or.resolve_right : ∀ {a b : Prop}, a ∨ b → ¬b → a
@Or.neg_resolve_left : ∀ {a b : Prop}, ¬a ∨ b → a → b
@Or.neg_resolve_right : ∀ {a b : Prop}, a ∨ ¬b → b → a

For example, if you have h1 : P ∨ Q and h2 : ¬P, then Or.resolve_left h1 h2 is a proof of Q.

•

exists_unique

If your goal is ∃! (x : U), P x and you think that a is the unique value of x that makes P x
true, then you can use the tactic apply ExistsUnique.intro a. This will leave you with two
goals to prove, P a and ∀ (y : U), P y → y = a.

•

obtain

There is an obtain tactic in standard Lean, but it is slightly different from the one used in
this book. If you have h : ∃ (x : U), P x, then the tactic obtain ⟨u, h1⟩ := h will introduce
both u : U and h1 : P u into the tactic state. Note that u and h1 must be enclosed in angle
brackets, ⟨ ⟩. To enter those brackets, type \< and \>.

If you have h : ∃! (x : U), P x, then obtain ⟨u, h1, h2⟩ := h will also introduce u : U and
h1 : P u into the tactic state. In addition, it will introduce h2 as an identifier for a statement
that is equivalent to ∀ (y : U), P y → y = u. (Unfortunately, the statement introduced is
more complicated.)

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

325

https://doi.org/10.1017/9781108539890

Appendix

You may also find the theorems ExistsUnique.exists and ExistsUnique.unique useful:

@ExistsUnique.exists : ∀ {α : Sort u_1} {p : α → Prop},
(∃! (x : α), p x) → ∃ (x : α), p x

@ExistsUnique.unique : ∀ {α : Sort u_1} {p : α → Prop},
(∃! (x : α), p x) → ∀ {y₁ y₂ : α}, p y₁ → p y₂ → y₁ = y₂

•

or_left, or_right

If your goal is P ∨ Q, then the tactics or_left and or_right let you assume that one of P and
Q is false and prove the other. Perhaps the easiest way to do that in standard Lean is to use
proof by cases. For example, to assume P is false and prove Q you might proceed as follows:

-- Goal is P ∨ Q
by_cases hP : P
· -- Case 1. hP : P

exact Or.inl hP
done

· -- Case 2. hP : ¬P
apply Or.inr
--We now have hP : ¬P, and goal is Q
::::
done

•

show

There is a show tactic in standard Lean, but it works a little differently from the show tactic
we have used in this book. When our goal was a statement P and we had an expression t that
was a proof of P, we usually completed the proof by writing show P from t. In standard Lean
you can complete the proof by writing exact t, as explained near the end of Section 3.6.

Typing Symbols

Symbol How To Type It
¬ \not or \n
∧ \and
∨ \or or \v

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

326

https://doi.org/10.1017/9781108539890

Appendix

Symbol How To Type It
→ \to or \r or \imp
↔ \iff or \lr
∀ \forall or \all
∃ \exists or \ex
⦃ \{{
⦄ \}}
= =
≠ \ne
∈ \in
∉ \notin or \inn
⊆ \sub
⊈ \subn
∪ \union or \cup
∩ \inter or \cap
⋃₀ \U0
⋂₀ \I0
\ \\
∆ \symmdiff
∅ \emptyset
P \powerset
· \.
← \leftarrow or \l
↑ \uparrow or \u
ℕ \N
ℤ \Z
ℚ \Q
ℝ \R
ℂ \C
≤ \le
≥ \ge
∣ \|
× \times or \x
∘ \comp or \circ
≡ \==
∼ \sim or \~
ₛ _s
ᵣ _r
⟨ \<
⟩ \>

© 2023 Daniel J. Velleman.
Short excerpts from Daniel J. Velleman, How To Prove It: A Structured Approach, 3rd Edition
© Daniel J. Velleman 2019, published by Cambridge University Press, reprinted with permission.

327

https://doi.org/10.1017/9781108539890

	Preface
	About This Book
	About Lean
	Installing Lean
	Using Gitpod
	About the HTPI Lean Package
	License
	Acknowledgments

	Sentential Logic
	Quantificational Logic
	Introduction to Lean
	A First Example
	Term Mode
	Tactic Mode
	Types

	Proofs
	3.1 & 3.2. Proofs Involving Negations and Conditionals
	3.3. Proofs Involving Quantifiers
	3.4. Proofs Involving Conjunctions and Biconditionals
	3.5. Proofs Involving Disjunctions
	3.6. Existence and Uniqueness Proofs
	3.7. More Examples of Proofs

	Relations
	4.1. Ordered Pairs and Cartesian Products
	4.2. Relations
	4.3. More About Relations
	4.4. Ordering Relations
	4.5. Equivalence Relations

	Functions
	5.1. Functions
	5.2. One-to-One and Onto
	5.3. Inverses of Functions
	5.4. Closures
	5.5. Images and Inverse Images: A Research Project

	Mathematical Induction
	6.1. Proof by Mathematical Induction
	6.2. More Examples
	6.3. Recursion
	6.4. Strong Induction
	6.5. Closures Again

	Number Theory
	7.1. Greatest Common Divisors
	7.2. Prime Factorization
	7.3. Modular Arithmetic
	7.4. Euler's Theorem
	7.5. Public-Key Cryptography

	Infinite Sets
	8.1. Equinumerous Sets
	8.1½. Debts Paid
	8.2. Countable and Uncountable Sets
	8.3. The Cantor–Schröder–Bernstein Theorem

	Appendix
	Tactics Used
	Transitioning to Standard Lean
	Typing Symbols

